Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Film-Forming Solution (FFS)
2.4. Attenuated Total Reflection—Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
2.5. Color of Film
2.6. Microstructure of Film
2.7. Film Thickness
2.8. Mechanical Properties
2.9. Swelling
2.10. Water Solubility
2.11. Thermogravimetric Analysis (TGA)
2.12. Biodegradability Test
2.13. Statistical Analysis
3. Results and Discussion
3.1. Film Production: Optimization of CS, GEL, and GLY Content
3.2. Chemical Composition of the Films
3.3. Analysis of Film Color
3.4. Morphology and Microstructure of Designed Chitosan-Based OPT-F Film
3.5. Mechanical Properties
3.6. Swelling
3.7. Water Solubility (WS)
3.8. Thermogravimetric Analysis
3.9. Biodegradability Test of Designed OPT-F
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020, 9, 1438. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Wang, Q. Advances in Using Nanotechnology Structuring Approaches for Improving Food Packaging. Annu. Rev. Food Sci. Technol. 2020, 11, 339–364. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, J.; Hosseini, S.F.; Keyvani, N.; Gómez-Guillén, M.C. Polymer Blending Effects on the Physicochemical and Structural Features of the Chitosan/Poly(Vinyl Alcohol)/Fish Gelatin Ternary Biodegradable Films. Food Hydrocoll. 2019, 95, 122–132. [Google Scholar] [CrossRef]
- Rathod, N.B.; Bangar, S.P.; Šimat, V.; Ozogul, F. Chitosan and Gelatine Biopolymer-Based Active/Biodegradable Packaging for the Preservation of Fish and Fishery Products. Int. J. Food Sci. Technol. 2023, 58, 854–861. [Google Scholar] [CrossRef]
- Lou, L.; Chen, H. Functional Modification of Gelatin-Based Biodegradable Composite Films: A Review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2023, 40, 928–949. [Google Scholar] [CrossRef]
- Piekarska, K.; Sikora, M.; Owczarek, M.; Jóźwik-Pruska, J.; Wiśniewska-Wrona, M. Chitin and Chitosan as Polymers of the Future—Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers 2023, 15, 793. [Google Scholar] [CrossRef]
- La Fuente Arias, C.I.; Kubo, M.T.K.-N.; Tadini, C.C.; Augusto, P.E.D. Bio-Based Multilayer Films: A Review of the Principal Methods of Production and Challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 2260–2276. [Google Scholar] [CrossRef]
- Dilruba Öznur, K.G.; Ayşe Pınar, T.D. Statistical Evaluation of Biocompatibility and Biodegradability of Chitosan/Gelatin Hydrogels for Wound-Dressing Applications. Polym. Bull. 2024, 81, 1563–1596. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, H.; Nishinari, K. (Eds.) Food Hydrocolloids: Functionalities and Applications; Springer: Singapore, 2021; ISBN 9789811603198. [Google Scholar]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of Essential Oils in Active Food Packaging: Recent Advances and Future Trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Liu, Y.; Kai, Y.; Yang, H. Biodegradable Fish Gelatin/Chitosan-Based Active Films Alter Chill-Stored Golden Pomfret (Trachinotus blochii) Metabolites Mainly through Modulating Four Metabolic Pathways. Food Packag. Shelf Life 2023, 36, 101046. [Google Scholar] [CrossRef]
- Said, N.S.; Howell, N.K.; Sarbon, N.M. A Review on Potential Use of Gelatin-Based Film as Active and Smart Biodegradable Films for Food Packaging Application. Food Rev. Int. 2023, 39, 1063–1085. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and Characterization of Chitosan Film Incorporated with Thinned Young Apple Polyphenols as an Active Packaging Material. Carbohydr. Polym. 2017, 163, 81–91. [Google Scholar] [CrossRef]
- Wen, H.; Tang, D.; Lin, Y.; Zou, J.; Liu, Z.; Zhou, P.; Wang, X. Enhancement of Water Barrier and Antimicrobial Properties of Chitosan/Gelatin Films by Hydrophobic Deep Eutectic Solvent. Carbohydr. Polym. 2023, 303, 120435. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ezati, P.; Rhim, J.-W. Chitosan/Gelatin-Based Multifunctional Film Integrated with Green Tea Carbon Dots to Extend the Shelf Life of Pork. Food Packag. Shelf Life 2023, 37, 101075. [Google Scholar] [CrossRef]
- Reyes Méndez, L.M.; Méndez Morales, P.A.; López-Córdoba, A.; Ortega-Toro, R.; Gutiérrez, T.J. Active Chitosan/Gelatin-Based Films and Coatings Containing Eugenol and Oregano Essential Oil for Fresh Cheese Preservation. J. Food Process Eng. 2023, 46, e14396. [Google Scholar] [CrossRef]
- Zhang, A.; Han, Y.; Zhou, Z. Characterization of Citric Acid Crosslinked Chitosan/Gelatin Composite Film with Enterocin CHQS and Red Cabbage Pigment. Food Hydrocoll. 2023, 135, 108144. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, Q.; Yu, L.; Xie, F. Thermomechanically Processed Chitosan:Gelatin Films Being Transparent, Mechanically Robust and Less Hygroscopic. Carbohydr. Polym. 2021, 272, 118522. [Google Scholar] [CrossRef] [PubMed]
- Naseri, H.R.; Beigmohammadi, F.; Mohammadi, R.; Sadeghi, E. Production and Characterization of Edible Film Based on Gelatin–Chitosan Containing Ferulago Angulate Essential Oil and Its Application in the Prolongation of the Shelf Life of Turkey Meat. J. Food Process. Preserv. 2020, 44, e14558. [Google Scholar] [CrossRef]
- Rodrigues, M.Á.V.; Bertolo, M.R.V.; Marangon, C.A.; Martins, V.d.C.A.; de Guzzi Plepis, A.M. Chitosan and Gelatin Materials Incorporated with Phenolic Extracts of Grape Seed and Jabuticaba Peel: Rheological, Physicochemical, Antioxidant, Antimicrobial and Barrier Properties. Int. J. Biol. Macromol. 2020, 160, 769–779. [Google Scholar] [CrossRef]
- Riaz, A.; Lagnika, C.; Abdin, M.; Hashim, M.H.; Ahmed, W. Preparation and Characterization of Chitosan/Gelatin-Based Active Food Packaging Films Containing Apple Peel Nanoparticles. J. Polym. Environ. 2020, 28, 411–420. [Google Scholar] [CrossRef]
- Hoque, M.; Janaswamy, S. Biodegradable Packaging Films from Banana Peel Fiber. Sustain. Chem. Pharm. 2024, 37, 101400. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Duan, S.; Li, C.; Hu, B.; Liu, A.; Wu, D.; Cui, H.; Lin, L.; He, J.; et al. Preparation and Characterization of Chitosan Films with Three Kinds of Molecular Weight for Food Packaging. Int. J. Biol. Macromol. 2020, 155, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Prus-Walendziak, W.; Kozlowska, J. Design of Sodium Alginate/Gelatin-Based Emulsion Film Fused with Polylactide Microparticles Charged with Plant Extract. Materials 2021, 14, 745. [Google Scholar] [CrossRef]
- Boun, H.R.; Huxsoll, C.C. Control of Minimally Processed Carrot (Daucus Carota) Surface Discoloration Caused by Abrasion Peeling. J. Food Sci. 1991, 56, 416–418. [Google Scholar] [CrossRef]
- Tagrida, M.; Nilsuwan, K.; Gulzar, S.; Prodpran, T.; Benjakul, S. Fish Gelatin/Chitosan Blend Films Incorporated with Betel (Piper betle L.) Leaf Ethanolic Extracts: Characteristics, Antioxidant and Antimicrobial Properties. Food Hydrocoll. 2023, 137, 108316. [Google Scholar] [CrossRef]
- Trejo-Caballero, M.E.; Díaz-Patiño, L.; González-Reynac, M.; Molina, G.A.; López-Miranda, J.L.; Esparza, R.; España-Sánchez, B.L.; Arjona, N.; Estevez, M. Biopolymeric Hydrogel Electrolytes Obtained by Using Natural Polysaccharide–Poly(Itaconic Acid-Co-2-Hydroxyethyl Methacrylate) in Deep Eutectic Solvents for Rechargeable Zn–Air Batteries. Green Chem. 2023, 25, 6784–6796. [Google Scholar] [CrossRef]
- Jridi, M.; Hajji, S.; Ayed, H.B.; Lassoued, I.; Mbarek, A.; Kammoun, M.; Souissi, N.; Nasri, M. Physical, Structural, Antioxidant and Antimicrobial Properties of Gelatin–Chitosan Composite Edible Films. Int. J. Biol. Macromol. 2014, 67, 373–379. [Google Scholar] [CrossRef]
- Fathiraja, P.; Gopalrajan, S.; Karunanithi, M.; Nagarajan, M.; OBAIAH, M.; Sukumar, D.; Neethiselvan, N. Development of a Biodegradable Composite Film from Chitosan, Agar and Glycerol Based on Optimization Process by Response Surface Methodology. Cellul. Chem. Technol. 2021, 55, 849–865. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W. Improving Functional Properties of Chitosan Films as Active Food Packaging by Incorporating with Propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Fathiraja, P.; Gopalrajan, S.; Karunanithi, M.; Obaiah, M.; Rajasekaran, B.; Vedhi, C. Process Optimization and Characterization of Composite Biopolymer Films Obtained from Fish Scale Gelatin, Agar and Chitosan Using Response Surface Methodology. Polym. Bull. 2022, 80, 10775–10807. [Google Scholar] [CrossRef]
- Pereda, M.; Ponce, A.G.; Marcovich, N.E.; Ruseckaite, R.A.; Martucci, J.F. Chitosan-Gelatin Composites and Bi-Layer Films with Potential Antimicrobial Activity. Food Hydrocoll. 2011, 25, 1372–1381. [Google Scholar] [CrossRef]
- Chu, M.; Feng, N.; An, H.; You, G.; Mo, C.; Zhong, H.; Pan, L.; Hu, D. Design and Validation of Antibacterial and pH Response of Cationic Guar Gum Film by Combining Hydroxyethyl Cellulose and Red Cabbage Pigment. Int. J. Biol. Macromol. 2020, 162, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.; Liu, C. Film Transparency and Opacity Measurements. Food Anal. Methods 2022, 15, 2840–2846. [Google Scholar] [CrossRef]
- Szlachetka, O.; Witkowska-Dobrev, J.; Baryła, A.; Dohojda, M. Low-Density Polyethylene (LDPE) Building Films—Tensile Properties and Surface Morphology. J. Build. Eng. 2021, 44, 103386. [Google Scholar] [CrossRef]
- Peled, A.; Shah, S.P. Processing Effects in Cementitious Composites: Extrusion and Casting. J. Mater. Civ. Eng. 2003, 15, 192–199. [Google Scholar] [CrossRef]
- Luzi, F.; Torre, L.; Kenny, J.M.; Puglia, D. Bio- and Fossil-Based Polymeric Blends and Nanocomposites for Packaging: Structure–Property Relationship. Materials 2019, 12, 471. [Google Scholar] [CrossRef]
- Fathiraja, P.; Gopalrajan, S.; Kumar, K.; Obaiah, M.C. Augmentation of Bioactivity with Addition of Clove Essential Oil into Fish Scale Gelatin, Agar and Chitosan Composite Film and Biodegradable Features. Polym. Bull. 2024, 81, 5329–5357. [Google Scholar] [CrossRef]
- Haghighi, H.; Biard, S.; Bigi, F.; De Leo, R.; Bedin, E.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Comprehensive Characterization of Active Chitosan-Gelatin Blend Films Enriched with Different Essential Oils. Food Hydrocoll. 2019, 95, 33–42. [Google Scholar] [CrossRef]
- Pérez-Córdoba, L.J.; Norton, I.T.; Batchelor, H.K.; Gkatzionis, K.; Spyropoulos, F.; Sobral, P.J.A. Physico-Chemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Based Films Loaded with Nanoemulsions Encapsulating Active Compounds. Food Hydrocoll. 2018, 79, 544–559. [Google Scholar] [CrossRef]
- Chang, W.; Liu, F.; Sharif, H.R.; Huang, Z.; Goff, H.D.; Zhong, F. Preparation of Chitosan Films by Neutralization for Improving Their Preservation Effects on Chilled Meat. Food Hydrocoll. 2019, 90, 50–61. [Google Scholar] [CrossRef]
- Lian, H.; Peng, Y.; Shi, J.; Wang, Q. Effect of Emulsifier Hydrophilic-Lipophilic Balance (HLB) on the Release of Thyme Essential Oil from Chitosan Films. Food Hydrocoll. 2019, 97, 105213. [Google Scholar] [CrossRef]
- Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Ciannamea, E.M.; Castillo, L.A.; Barbosa, S.E.; De Angelis, M.G. Barrier Properties and Mechanical Strength of Bio-Renewable, Heat-Sealable Films Based on Gelatin, Glycerol and Soybean Oil for Sustainable Food Packaging. React. Funct. Polym. 2018, 125, 29–36. [Google Scholar] [CrossRef]
- Babaghayou, M.I.; Mourad, A.-H.I.; Ochoa, A.; Beltrán, F.; Cherupurakal, N. Study on the Thermal Stability of Stabilized and Unstabilized Low-Density Polyethylene Films. Polym. Bull. 2021, 78, 5225–5241. [Google Scholar] [CrossRef]
- Tavares, L.; Barros, H.L.B.; Vaghetti, J.C.P.; Noreña, C.P.Z. Microencapsulation of Garlic Extract by Complex Coacervation Using Whey Protein Isolate/Chitosan and Gum Arabic/Chitosan as Wall Materials: Influence of Anionic Biopolymers on the Physicochemical and Structural Properties of Microparticles. Food Bioprocess. Technol. 2019, 12, 2093–2106. [Google Scholar] [CrossRef]
- Medina Jaramillo, C.; Gutiérrez, T.J.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability and Plasticizing Effect of Yerba Mate Extract on Cassava Starch Edible Films. Carbohydr. Polym. 2016, 151, 150–159. [Google Scholar] [CrossRef]
- Oberlintner, A.; Bajić, M.; Kalčíková, G.; Likozar, B.; Novak, U. Biodegradability Study of Active Chitosan Biopolymer Films Enriched with Quercus Polyphenol Extract in Different Soil Types. Environ. Technol. Innov. 2021, 21, 101318. [Google Scholar] [CrossRef]
- Martucci, J.F.; Ruseckaite, R.A. Biodegradation Behavior of Three-Layer Sheets Based on Gelatin and Poly (Lactic Acid) Buried under Indoor Soil Conditions. Polym. Degrad. Stab. 2015, 116, 36–44. [Google Scholar] [CrossRef]
- Sawaguchi, A.; Ono, S.; Oomura, M.; Inami, K.; Kumeta, Y.; Honda, K.; Sameshima-Saito, R.; Sakamoto, K.; Ando, A.; Saito, A. Chitosan Degradation and Associated Changes in Bacterial Community Structures in Two Contrasting Soils. Soil Sci. Plant Nutr. 2015, 61, 471–480. [Google Scholar] [CrossRef]
- Hasan, M.; Gopakumar, D.A.; Olaiya, N.G.; Zarlaida, F.; Alfian, A.; Aprinasari, C.; Alfatah, T.; Rizal, S.; Khalil, H.P.S.A. Evaluation of the Thermomechanical Properties and Biodegradation of Brown Rice Starch-Based Chitosan Biodegradable Composite Films. Int. J. Biol. Macromol. 2020, 156, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.; Vasudevan, S. Extraction, Characterization, and Antimicrobial Activity of Chitosan from Horse Mussel Modiolus Modiolus. ACS Omega 2020, 5, 20224–20230. [Google Scholar] [CrossRef] [PubMed]
- Gross, R.A.; Kalra, B. Biodegradable Polymers for the Environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef] [PubMed]
Film-Forming Components | Application | Control Film | Principal Results | Ref. |
---|---|---|---|---|
Chitosan–gelatin–thymol–deep eutectic solvent | Food packaging | Chitosan–gelatin film | The solvent improved the barrier properties of the resulting films, as well as their mechanical and bioactive properties. | [15] |
Chitosan–gelatin–green tea carbon dots | Food packaging | Chitosan–gelatin film | Quantum dots presented good compatibility with the polymer matrix, resulting in homogeneous films with bioactive properties. However, the quantum dot concentration affects the elongation percentage. | [16] |
Chitosan–gelatin-eugenol and/or oregano essential oil | Food packaging | Chitosan–gelatin film | The addition of essential oils confers antimicrobial properties on S. aureus and E. coli. No mechanical properties were analyzed. | [17] |
Chitosan–gelatin–citric acid–red cabbage pigment–enterocin | Food packaging | Chitosan–gelatin film | A smart active compound with antioxidant properties, pH responsiveness, and bacterial inhibition was obtained. | [18] |
Chitosan–gelatin–glycerol films | Chitosan–gelatin film | Mixing chitosan and gelatin at a 1:1 ratio resulted in materials with better mechanical and barrier properties. | [19] | |
Chitosan–gelatin–Ferulago angulate essential oil | Food packaging | Chitosan–gelatin film | Essential oil confers antimicrobial properties and improves water vapor permeability. However, the tensile strength decreases when essential oil is incorporated into the polymer matrix. | [20] |
Chitosan–gelatin–grape seed extract and/or jabuticaba peel | Food packaging | Chitosan–gelatin film | Grape seed and jabuticaba peel extracts improved the antioxidant properties of the films; however, the mechanical properties were not characterized. | [21] |
Chitosan–gelatin–apple peel nanoparticles | Food packaging | Chitosan–gelatin film | Apple peel nanoparticles improve the antioxidant and physical properties of the film. However, its barrier properties decrease. | [22] |
Response | Predicted Value | Experimental Value | Absolute Residual Error (%) |
---|---|---|---|
Thickness (mm) | 0.043 ± 0.003 | 0.046 ± 0.003 | 6.98 |
Tensile strength (mPa) | 13.00 ± 1.15 | 11.48 ± 1.42 | 11.73 |
Elongation at break (%) | 3.2 ± 0.2 | 2.6 ± 0.3 | 18.75 |
Sample | Color Parameters | ||||
---|---|---|---|---|---|
L | a | b | ΔE | WI | |
OPT-F | 95.68 ± 0.28 a | −0.21 ± 0.21 a | 1.63 ± 0.31 a | 3.65 ± 1.05 a | 95.37 ± 0.37 b |
LDPE | 91.01 ± 0.47 b | −0.17 ± 0.27 a | −1.61 ± 0.22 b | 5.20 ± 0.47 b | 90.85 ± 0.44 a |
Sample | Swelling (%) | Water Solubility (%) |
---|---|---|
OPT-F | 75.95 ± 5.03 b | 24.34 ± 2.47 b |
LDPE | 2.68 ± 1.31 a | 1.8 ± 0.7 a |
Sample | Initial Weight (mg) | Final Weight (mg) | Weight Loss (%) |
---|---|---|---|
OPT-F | 11.3 ± 0.3 | 10.5 ± 0.6 | 7.1 |
LDPE | 11.4 ± 0.4 | 11.4 ± 0.4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiallos-Núñez, J.; Cardero, Y.; Cabrera-Barjas, G.; García-Herrera, C.M.; Inostroza, M.; Estevez, M.; España-Sánchez, B.L.; Valenzuela, L.M. Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging. Polymers 2024, 16, 2471. https://doi.org/10.3390/polym16172471
Fiallos-Núñez J, Cardero Y, Cabrera-Barjas G, García-Herrera CM, Inostroza M, Estevez M, España-Sánchez BL, Valenzuela LM. Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging. Polymers. 2024; 16(17):2471. https://doi.org/10.3390/polym16172471
Chicago/Turabian StyleFiallos-Núñez, Johanna, Yaniel Cardero, Gustavo Cabrera-Barjas, Claudio M. García-Herrera, Matías Inostroza, Miriam Estevez, Beatriz Liliana España-Sánchez, and Loreto M. Valenzuela. 2024. "Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging" Polymers 16, no. 17: 2471. https://doi.org/10.3390/polym16172471
APA StyleFiallos-Núñez, J., Cardero, Y., Cabrera-Barjas, G., García-Herrera, C. M., Inostroza, M., Estevez, M., España-Sánchez, B. L., & Valenzuela, L. M. (2024). Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging. Polymers, 16(17), 2471. https://doi.org/10.3390/polym16172471