Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Octane Thiol Soybean Oil (OTSO)
2.3. Synthesis of the OTSO-IPDI Network (Control Group)
2.4. Synthesis of OTSO-PBAT Network
2.5. Characterization
2.5.1. Nuclear Magnetic Resonance Hydrogen Spectrum (1H-NMR)
2.5.2. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.5.3. Gel Swelling Test
2.5.4. Differential Scanning Calorimetry Test (DSC)
2.5.5. Thermal Relaxation Test
2.5.6. Static Tensile Test
2.5.7. Self-Healing Performance Test
3. Results and Discussion
3.1. Preparation of Thiol-Terminated ESO (OTSO)
3.2. Curing and Structural Characterization of the OTSO-PBAT Network
3.3. Thermal Behaviors of the OTSO-PBAT Network
3.4. Dynamic Features of the OTSO-PBAT Network
3.5. Mechanical Properties of the OTSO-PBAT Network
3.6. Self-Healing Capacity of the OTSO-PBAT Network
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Narancic, T.; Cerrone, F.; Beagan, N.; O′Connor, K.E. Recent Advances in Bioplastics: Application and Biodegradation. Polymers 2020, 12, 920. [Google Scholar] [CrossRef] [PubMed]
- An, R.R.; Liu, C.G.; Wang, J.; Jia, P.Y. Recent Advances in Degradation of Polymer Plastics by Insects Inhabiting Microorganisms. Polymers 2023, 15, 1307. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Su, F.M.; Liu, C.T.; Guo, Z.H. Research progress for plastic waste management and manufacture of value-added products. Adv. Compos. Hybrid Mater. 2020, 3, 443–461. [Google Scholar] [CrossRef]
- Billiet, S.; Hillewaere, X.K.D.; Teixeira, R.F.A.; Du Prez, F.E. Chemistry of Crosslinking Processes for Self-Healing Polymers. Macromol. Rapid Commun. 2013, 34, 290–309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Subramanian, H.; Grailer, J.J.; Tiwari, A.; Pilla, S.; Steeber, D.A.; Gong, S. Fabrication of biodegradable poly(trimethylene carbonate) networks for potential tissue engineering scaffold applications. Polym. Adv. Technol. 2009, 20, 742–747. [Google Scholar] [CrossRef]
- Varghese, S.; Lele, A.; Mashelkar, R. Metal-ion-mediated healing of gels. J. Polym. Sci. Part A-Polym. Chem. 2006, 44, 666–670. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Raghavan, P.; Kessler, M.R. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustain. Chem. Eng. 2014, 2, 1072–1092. [Google Scholar] [CrossRef]
- Zhu, M.S.Q.; Liu, J.; Gan, L.H.; Long, M.N. Research progress in bio-based self-healing materials. Eur. Polym. J. 2020, 129, 109651. [Google Scholar] [CrossRef]
- Mauldin, T.C.; Kessler, M.R. Self-healing polymers and composites. Int. Mater. Rev. 2010, 55, 317–346. [Google Scholar] [CrossRef]
- Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Self-healing bio-based furan polymers cross-linked with various bis-maleimides. Polymer 2013, 54, 5351–5357. [Google Scholar] [CrossRef]
- Cash, J.J.; Kubo, T.; Bapat, A.P.; Sumerlin, B.S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 2015, 48, 2098–2106. [Google Scholar] [CrossRef]
- Hansen, B.; Wu, C.J.; Toohey, W.; Sottos, K.S.; White, N.R.; Lewis, S.R. Self-Healing Materials with Interpenetrating Microvascular Networks. Adv. Mater. 2009, 21, 4143–4147. [Google Scholar] [CrossRef]
- Thum, P.S.; Swogger, K.W. Olefin polymer technologies-History and recent progress at The Dow Chemical Company. Prog. Polym. Sci. 2008, 33, 797–819. [Google Scholar]
- Garcia-Gonzalez, D.; Ter-Yesayants, T.; Moreno-Mateos, M.A.; Lopez-Donaire, M.L. Hard-magnetic phenomena enable autonomous self-healing elastomers. Compos. Part B-Eng. 2023, 248, 110357. [Google Scholar] [CrossRef]
- Helmer, R.J.N.; Farrow, D.; Ball, K.; Phillips, E.; Farouil, A.; Blanchonette, I. A pilot evaluation of an electronic textile for lower limb monitoring and interactive biofeedback. 5th Asia-Pac. Congr. Sports Technol. (APCST) 2011, 13, 513–518. [Google Scholar] [CrossRef]
- Xie, H.L.; Lai, X.J.; Li, H.Q.; Gao, J.F.; Zeng, X.R.; Huang, X.Y.; Lin, X.Y. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities. Chem. Eng. J. 2019, 369, 8–17. [Google Scholar] [CrossRef]
- Ge, J.; Sun, L.; Zhang, F.R.; Zhang, Y.; Shi, L.A.; Zhao, H.Y.; Zhu, H.W.; Jiang, H.L.; Yu, S.H. A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties. Adv. Mater. 2016, 28, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.R.; Sottos, N.R.; White, S.R. Self-healing of internal damage in synthetic vascular materials. Adv. Mater. 2010, 22, 5159–5163. [Google Scholar] [CrossRef]
- Toohey, K.S.; Hansen, C.J.; Lewis, J.A.; White, S.R.; Sottos, N.R. Delivery of two-part self-healing chemistry via microvascular networks. Adv. Funct. Mater. 2009, 19, 1399–1405. [Google Scholar] [CrossRef]
- Montarnal, D.; Cordier, P.; Soulié-Ziakovic, C.; Tournilhac, F.; Leibler, L. Synthesis of Self-Healing Supramolecular Rubbers from Fatty Acid Derivatives, DiethyleneTriamine, and Urea. J. Polym. Sci. Part A-Polym. Chem. 2008, 46, 7925–7936. [Google Scholar] [CrossRef]
- Burattini, S.; Greenland, B.W.; Hayes, W.; Mackay, M.E.; Rowan, S.J.; Colquhoun, H.M. A Supramolecular Polymer Based on Tweezer-Type π-π Stacking Interactions: Molecular Design for Healability and Enhanced Toughness. Chem. Mater. 2011, 23, 6–8. [Google Scholar] [CrossRef]
- Burnworth, M.; Tang, L.M.; Kumpfer, J.R.; Duncan, A.J.; Beyer, F.L.; Fiore, G.L.; Rowan, S.J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.T.; Jiang, M.J.; Wu, G.; Chen, L.; Chen, S.C.; Cao, Y.X.; Wang, Y.Z. Photothermal Conversion Triggered Precisely Targeted Healing of Epoxy Resin Based on Thermoreversible Diels-Alder Network and Amino-Functionalized Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 20797–20807. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.C.; Tao, L.; Hsieh, F.Y.; Wei, Y.; Chiu, I.M.; Hsu, S.H. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv. Mater. 2015, 27, 3518–3524. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, N.; Bode, S.; Bose, R.K.; Vitz, J.; Seifert, A.; Hoeppener, S.; Garcia, S.J.; Spange, S.; van der Zwaag, S.; Hager, M.D.; et al. Acylhydrazones as Reversible Covalent Crosslinkers for Self-Healing Polymers. Adv. Funct. Mater. 2015, 25, 3295–3301. [Google Scholar] [CrossRef]
- Rekondo, A.; Martin, R.; de Luzuriaga, A.R.; Cabañero, G.; Grande, H.J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240. [Google Scholar] [CrossRef]
- Kuhl, N.; Geitner, R.; Bose, R.K.; Bode, S.; Dietzek, B.; Schmitt, M.; Popp, J.; Garcia, S.J.; van der Zwaag, S.; Schubert, U.S.; et al. Self-Healing Polymer Networks Based on Reversible Michael Addition Reactions. Macromol. Chem. Phys. 2016, 217, 2541–2550. [Google Scholar] [CrossRef]
- Liu, T.; Hao, C.; Zhang, S.; Yang, X.N.; Wang, L.W.; Han, J.R.; Li, Y.Z.; Xin, J.N.; Zhang, J.W. A Self-Healable High Glass Transition Temperature Bioepoxy Material Based on Vitrimer Chemistry. Macromolecules 2018, 51, 5577–5585. [Google Scholar] [CrossRef]
- Fortman, D.J.; Brutman, J.P.; Cramer, C.J.; Hillmyer, M.A.; Dichtel, W.R. Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. J. Am. Chem. Soc. 2015, 137, 14019–14022. [Google Scholar] [CrossRef]
- Fan, C.J.; Wen, Z.B.; Xu, Z.Y.; Xiao, Y.; Wu, D.; Yang, K.K.; Wang, Y.Z. Adaptable Strategy to Fabricate Self-Healable and Reprocessable Poly(thiourethane-urethane) Elastomers via Reversible Thiol- Isocyanate Click Chemistry. Macromolecules 2020, 53, 4284–4293. [Google Scholar] [CrossRef]
- Gan, Q.; Cui, J.W.; Jin, B. Environmental microplastics: Classification, sources, fates, and effects on plants. Chemosphere 2023, 313, 137559. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, C.; Özdemir, S.; Ozay, Y.; Acer, Ö.; Dizge, N. Investigation of two different size microplastic degradation ability of thermophilic bacteria using polyethylene polymers. Environ. Technol. 2023, 44, 3710–3720. [Google Scholar] [CrossRef]
- Borah, A.; Hande, O.M.; Jayakumar, S.; Devipriya, S.P. Microplastic pollution in beach sediments in the Dapoli coast, Maharashtra, the western peninsular region of India. Reg. Stud. Mar. Sci. 2024, 77, 103640. [Google Scholar] [CrossRef]
- Sun, R.K.; Li, T.; Qiu, S.J.; Liu, Y.; Wu, Z.J.; Dai, Z.Q.; Liao, Y.T.; Chen, X.; Chen, S.Y.; Li, C.Y. Occurrence of antibiotic resistance genes carried by plastic waste from mangrove wetlands of the South China Sea. Sci. Total Environ. 2023, 864, 161111. [Google Scholar] [CrossRef] [PubMed]
- Kloxin, C.J.; Scott, T.F.; Adzima, B.J.; Bowman, C.N. Covalent Adaptable Networks (CANS): A Unique Paradigm in Cross-Linked Polymers. Macromolecules 2010, 43, 2643–2653. [Google Scholar] [CrossRef]
- Kloxin, C.J.; Bowman, C.N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 2013, 42, 7161–7173. [Google Scholar] [CrossRef] [PubMed]
- Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968. [Google Scholar] [CrossRef]
- Jang, Y.S.; Kim, B.; Shin, J.H.; Choi, Y.J.; Choi, S.; Song, C.W.; Lee, J.; Park, H.G.; Lee, S.Y. Bio-based production of C2-C6 platform chemicals. Biotechnol. Bioeng. 2012, 109, 2437–2459. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014, 16, 950–963. [Google Scholar] [CrossRef]
- Liu, T.; Fei, M.; Zhao, B.; Zhang, J. Progress in Biobased Vitrimers. Acta Polym. Sin. 2020, 51, 817–822. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Zych, A.; Tellers, J.; Bertolacci, L.; Ceseracciu, L.; Marini, L.; Mancini, G.; Athanassiou, A. Biobased, Biodegradable, Self-Healing Boronic Ester Vitrimers from Epoxidized Soybean Oil Acrylate. ACS Appl. Polym. Mater. 2021, 3, 1135–1144. [Google Scholar] [CrossRef]
- Ye, J.L.; Ma, S.Q.; Wang, B.B.; Chen, Q.M.; Huang, K.; Xu, X.W.; Li, Q.; Wang, S.; Lu, N.; Zhu, J. High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: Synthesis and properties. Green Chem. 2021, 23, 1772–1781. [Google Scholar] [CrossRef]
- Zhao, X.L.; Li, Y.D.; Zeng, J.B. Progress in the design and synthesis of biobased epoxy covalent adaptable networks. Polym. Chem. 2022, 13, 6573–6588. [Google Scholar] [CrossRef]
- Song, F.; Li, Z.S.; Jia, P.Y.; Zhang, M.; Bo, C.Y.; Feng, G.D.; Hu, L.H.; Zhou, Y.H. Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds. J. Mater. Chem. A 2019, 7, 13400–13410. [Google Scholar] [CrossRef]
- Zhao, X.L.; Liu, Y.Y.; Weng, Y.X.; Li, Y.D.; Zeng, J.B. Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. ACS Sustain. Chem. Eng. 2020, 8, 15020–15029. [Google Scholar] [CrossRef]
- Stuparu, M.C.; Khan, A. Thiol-epoxy “click” chemistry: Application in preparation and postpolymerization modification of polymers. J. Polym. Sci. Part A-Polym. Chem. 2016, 54, 3057–3070. [Google Scholar] [CrossRef]
- Grauzeliene, S.; Navaruckiene, A.; Skliutas, E.; Malinauskas, M.; Serra, A.; Ostrauskaite, J. Vegetable Oil-Based Thiol-Ene/Thiol-Epoxy Resins for Laser Direct Writing 3D Micro-/Nano-Lithography. Polymers 2021, 13, 872. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Dai, S.L.; Bi, L.W.; Jiang, J.X.; Zhang, H.B.; Chen, Y.X. Catalyst-Free Self-Healing Bio-Based Polymers: Robust Mechanical Properties, Shape Memory, and Recyclability. J. Agric. Food Chem. 2021, 69, 9338–9349. [Google Scholar] [CrossRef]
- Yang, X.X.; Guo, L.Z.; Xu, X.; Shang, S.B.; Liu, H. A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Mater. Des. 2020, 186, 108248. [Google Scholar] [CrossRef]
- Wu, J.; Yu, X.; Zhang, H.; Guo, J.; Hu, J.; Li, M.-H. Fully Biobased Vitrimers from Glycyrrhizic Acid and Soybean Oil for Self-Healing, Shape Memory, Weldable, and Recyclable Materials. ACS Sustain. Chem. Eng. 2020, 8, 6479–6487. [Google Scholar] [CrossRef]
Sample | Tg (°C) | Tm (°C) | ΔHm (J/g) | Tc (°C) | ΔHc (J/g) |
---|---|---|---|---|---|
PBAT | −20 | 127.23 | 16.08 | 57.03 | 22.33 |
OTSO100-IPDI100 | −16 | - | - | - | - |
OTSO100-PBAT70 | −20 | 120.31 | 11.49 | 49.23 | 16.11 |
OTSO100-PBAT80 | −23 | 119.23 | 11.64 | 50.38 | 16.08 |
OTSO100-PBAT90 | −22 | 120.01 | 12.26 | 50.51 | 16.37 |
OTSO100-PBAT100 | −23 | 120.38 | 12.42 | 50.81 | 17.70 |
Sample | Strain at Break (%) | Stress (MPa) |
---|---|---|
PBAT | 246 ± 9 | 8.0 ± 0.23 |
OTSO100-IPDI100 | 248 ± 169 | 4.1 ± 0.2 |
OTSO100-PBAT70 | 887 ± 139 | 17.4 ± 2.5 |
OTSO100-PBAT 80 | 1014 ± 22 | 22.1 ± 3.8 |
OTSO100-PBAT 90 | 1176 ± 37 | 30.6 ± 2.8 |
OTSO100-PBAT 100 | 1239 ± 19 | 33.2 ± 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Xia, Z.-M.; Zhan, R.; Yang, K.-K. Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate). Polymers 2024, 16, 2280. https://doi.org/10.3390/polym16162280
Xu B, Xia Z-M, Zhan R, Yang K-K. Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate). Polymers. 2024; 16(16):2280. https://doi.org/10.3390/polym16162280
Chicago/Turabian StyleXu, Bin, Zhong-Ming Xia, Rui Zhan, and Ke-Ke Yang. 2024. "Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate)" Polymers 16, no. 16: 2280. https://doi.org/10.3390/polym16162280
APA StyleXu, B., Xia, Z.-M., Zhan, R., & Yang, K.-K. (2024). Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate). Polymers, 16(16), 2280. https://doi.org/10.3390/polym16162280