Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methods
3. Results and Discussion
3.1. Resin Synthesis and Characterization
3.2. Thermal Aging of the Thermosets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Derradji, M.; Jun, W.; Wenbin, L.; Wang, J.; Liu, W. Phthalonitrile Resins and Composites: Properties and Applications, 1st ed.; Elsivier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Sun, B.G.; Shi, H.Q.; Yang, K.X.; Lei, Q.; Li, Y.Q.; Fu, Y.Q.; Hu, N.; Guo, Y.; Zhou, H.; Fu, S.Y. Effects of 3-aminophenylacetylene on mechanical properties at elevated temperatures of carbon fiber/phthalonitrile composites. Compos. Commun. 2020, 18, 55–61. [Google Scholar] [CrossRef]
- Sun, J.; Han, Y.; Zhao, Z.; Wang, G.; Zhan, S.; Ding, J.; Liu, X.; Guo, Y.; Zhou, H.; Zhao, T. Improved toughness of phthalonitrile composites through synergistic toughening methods. Compos. Commun. 2021, 26, 100779. [Google Scholar] [CrossRef]
- Yakovlev, M.V.; Kuchevskaia, M.E.; Terekhov, V.E.; Morozov, O.S.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V.; Bulgakov, B.A. Easy processable tris-phthalonitrile based resins and carbon fabric reinforced composites fabricated by vacuum infusion. Mater. Today Commun. 2022, 33, 104738. [Google Scholar] [CrossRef]
- Lei, W.; Wang, D.; Li, Y.; Li, K.; Liu, Q.; Wang, P.; Feng, W.; Liu, Q.; Yang, X. High temperature resistant polymer foam based on bi-functional benzoxazine-phthalonitrile resin. Polym. Degrad. Stab. 2022, 201, 110003. [Google Scholar] [CrossRef]
- Pu, Y.; Xie, H.; He, X.; Lv, J.; Zhu, Z.; Hong, J.; Zeng, K.; Hu, J.; Yang, G. The curing reaction of phthalonitrile promoted by sulfhydryl groups with high curing activity. Polymer 2022, 252, 124948. [Google Scholar] [CrossRef]
- Ji, B.; Pan, Y.; Lyu, J.; Liu, J.; Liao, W.; Yin, C.; Xing, S.; Wu, N. Low defect and high mechanical properties POSS copolymerization phthalonitrile resin prepared by powder hot isostatic pressing. Mater. Lett. 2023, 352, 135140. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, S.; Wu, M.; Liu, X.; Liu, X. Thermal, mechanical and dielectric property enhancement of benzoxazine-containing phthalonitrile resin: The effect of functional oligomeric polyphenyl ether. Polymer 2023, 280, 126040. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Ye, J.; Liu, X. Multiple catalytic polymerization of phthalonitrile resin bearing benzoxazine moiety: Greatly reduced curing temperature. Eur. Polym. J. 2022, 180, 111472. [Google Scholar] [CrossRef]
- Bulgakov, B.A.; Sulimov, A.V.; Babkin, A.V.; Afanasiev, D.V.; Solopchenko, A.V.; Afanaseva, E.S.; Kepman, A.V.; Avdeev, V.V. Flame-retardant carbon fiber reinforced phthalonitrile composite for high-temperature applications obtained by resin transfer molding. Mendeleev Commun. 2017, 27, 257–259. [Google Scholar] [CrossRef]
- Timoshkin, I.A.; Aleshkevich, V.V.; Afanas’eva, E.S.; Bulgakov, B.A.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V. Heat-Resistant Carbon Fiber Reinforced Plastics Based on a Copolymer of Bisphthalonitriles and Bisbenzonitrile. Polym. Sci. Ser. C 2020, 62, 172–182. [Google Scholar] [CrossRef]
- Poliakova, D.; Morozov, O.; Lipatov, Y.; Babkin, A.; Kepman, A.; Avdeev, V.; Bulgakov, B. Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites. Polymers 2022, 14, 4975. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, D.; Li, M.; Ji, C.; Wang, B. Thermal response and pyrolysis behavior of carbon fiber/phthalonitrile composites under one-sided butane flame heating: Experimental and numerical analysis. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107788. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Guo, Y.; Wang, S.; Sun, J.; Zhou, H.; Zhao, T. Phthalonitrile-Terminated Silicon-Containing Oligomers: Synthesis, Polymerization, and Properties. Ind. Eng. Chem. Res. 2019, 58, 9921–9930. [Google Scholar] [CrossRef]
- Pochiraju, K.V.; Tandon, G.P. Modeling thermo-oxidative layer growth in high-temperature resins. J. Eng. Mater. Technol. 2006, 128, 107–116. [Google Scholar] [CrossRef]
- Terekhov, V.E.; Morozov, O.S.; Afanaseva, E.S.; Bulgakov, B.A.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V. Fluorinated phthalonitrile resins with improved thermal oxidative stability. Mendeleev Commun. 2020, 30, 671–673. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Ji, P.; Yu, X.; Naito, K.; Zhang, Q. Synthesis and properties of a novel high-temperature vinylpyridine-based phthalonitrile polymer. High Perform. Polym. 2019, 31, 820–830. [Google Scholar] [CrossRef]
- Chaussoy, N.; Brandt, D.; Gérard, J.F. Phthalonitrile functionalized resoles—Use of 2,3-dicyanohydroquinone as a versatile monomer for resins with very high thermal stability. Polym. Degrad. Stab. 2023, 214, 110420. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Uth, S.; Sandman, D.J.; Foxman, B.M. Structure, polymorphism and thermal properties of phenyliminoisoindolines. J. Phys. Org. Chem. 2004, 17, 769–776. [Google Scholar] [CrossRef]
- Derradji, M.; Mehelli, O.; Khiari, K.; Abdous, S.; Soudjrari, S.; Zegaoui, A.; Ramdani, N.; Liu, W.; Al Hassan, M. High performance green composite from vanillin-based benzoxazine containing phthalonitrile and silane surface modified basalt fibers. High Perform. Polym. 2022, 34, 989–997. [Google Scholar] [CrossRef]
- Bulgakov, B.A.; Morozov, O.S.; Timoshkin, I.A.; Babkin, A.V.; Kepman, A.V. Bisphthalonitrile-based Thermosets as Heat-resistant Matrices for Fiber Reinforced Plastics. Polym. Sci. Ser. C 2021, 63, 64–101. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, Y.; Liao, W.; Liu, J.; Wu, N.; Xing, S.; Tang, J. Improving mechanical properties of high-temperature resistant carbon fiber/phthalonitrile composites via surface modification: A comparative study on modification methods. Compos. Interfaces 2023, 31, 385–400. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, J.; Wang, D.; Yang, J.; Zhang, H.; Wang, B. Reinforcement of mica on phthalonitrile resin and composites: Curing, thermal, mechanical and dielectric properties. Compos. Sci. Technol. 2023, 244, 110289. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Lei, W.; Bai, Z.; Zhan, Y.; Li, Y.; Li, K.; Wang, P.; Feng, W.; Liu, Q. Understanding the Thermal Degradation Mechanism of High-Temperature-Resistant Phthalonitrile Foam at Macroscopic and Molecular Levels. Polymers 2023, 15, 3947. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Han, J.; Li, N.; Weng, Z.; Wang, J.; Jian, X. Improving the curing process and thermal stability of phthalonitrile resin via novel mixed curing agents. Polym. Int. 2017, 66, 876–881. [Google Scholar] [CrossRef]
- Hu, Y.; Weng, Z.; Qi, Y.; Wang, J.; Zhang, S.; Liu, C.; Zong, L.; Jian, X. Self-curing triphenol A-based phthalonitrile resin precursor acts as a flexibilizer and curing agent for phthalonitrile resin. RSC Adv. 2018, 8, 32899–32908. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, Q.; Zhang, S.; Liu, X. Melamine modified phthalonitrile resins: Synthesis, polymerization and properties. Polymer 2022, 256, 125156. [Google Scholar] [CrossRef]
- Kolesnikov, T.I.; Orlova, A.M.; Tsegelskaya, A.Y.; Cherkaev, G.V.; Kechekyan, A.S.; Buzin, A.I.; Dmitryakov, P.V.; Belousov, S.I.; Abramov, I.G.; Serushkina, O.V.; et al. Dual-curing propargyl-phthalonitrile imide-based thermoset: Synthesis, characterization and curing behavior. Eur. Polym. J. 2021, 161, 110865. [Google Scholar] [CrossRef]
- Babkin, A.V.; Zodbinov, E.B.; Bulgakov, B.A.; Kepman, A.V.; Avdeev, V.V. Thermally stable phthalonitrile matrixes containing siloxane fragments. Polym. Sci. Ser. B 2016, 58, 298–306. [Google Scholar] [CrossRef]
- Laskoski, M.; Dominguez, D.D.; Keller, T.M. Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability. Polymer 2007, 48, 6234–6240. [Google Scholar] [CrossRef]
- Monzel, W.J.; Lu, G.-Q.Q.; Pruyn, T.L.; Houser, C.L.; Yee, G.T. Thermal and oxidative behavior of a tetraphenylsilane-containing phthalonitrile polymer. High Perform. Polym. 2019, 31, 935–947. [Google Scholar] [CrossRef]
- Bulgakov, B.A.; Babkin, A.V.; Dzhevakov, P.B.; Bogolyubov, A.A.; Sulimov, A.V.; Kepman, A.V.; Kolyagin, Y.G.; Guseva, D.V.; Rudyak, V.Y.; Chertovich, A.V. Low-melting phthalonitrile thermosetting monomers with siloxane- and phosphate bridges. Eur. Polym. J. 2016, 84, 205–217. [Google Scholar] [CrossRef]
- Wu, M.; Gu, Y.; Hao, D.; Chen, X.; Yu, X.; Zhang, Q. Fluorinated Phthalonitrile Resin with Excellent Thermal Stability and Low Dielectric Constant for High-Frequency Electronic Packaging. Macromol. Mater. Eng. 2022, 307, 2100651. [Google Scholar] [CrossRef]
- Morgan, A.B.; Putthanarat, S. Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym. Degrad. Stab. 2011, 96, 23–32. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Y.; Wang, G.; Xu, S.; Han, Y.; Liu, X.; Luo, Z.; Ye, L.; Zhou, H.; Zhao, T. Preparation and characterization of a self-catalyzed fluorinated novolac-phthalonitrile resin. Polym. Adv. Technol. 2018, 29, 2936–2942. [Google Scholar] [CrossRef]
- Dai, X.; Li, P.; Sui, Y.; Zhang, C. Thermal and flame-retardant properties of intrinsic flame-retardant epoxy resin containing biphenyl structures and phosphorus. Eur. Polym. J. 2021, 147, 110319. [Google Scholar] [CrossRef]
- Özer, M.S.; Gaan, S. Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance. Prog. Org. Coat. 2022, 171, 107027. [Google Scholar] [CrossRef]
- Wang, W.; Liao, C.; Liu, L.; Cai, W.; Yuan, Y.; Hou, Y.; Guo, W.; Zhou, X.; Qiu, S.; Song, L.; et al. Comparable investigation of tervalent and pentavalent phosphorus based flame retardants on improving the safety and capacity of lithium-ion batteries. J. Power Sources 2019, 420, 143–151. [Google Scholar] [CrossRef]
- Xu, W.; Wang, G.; Zheng, X. Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants. Polym. Degrad. Stab. 2015, 111, 142–150. [Google Scholar] [CrossRef]
- Nazir, R.; Gooneie, A.; Lehner, S.; Jovic, M.; Rupper, P.; Ott, N.; Hufenus, R.; Gaan, S. Alkyl sulfone bridged phosphorus flame-retardants for polypropylene. Mater. Des. 2021, 200, 109459. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, M.; Kan, Y.; Chen, J.; Hu, Y.; Xing, W. Synthesis and flame retardant efficiency study of two phosphorus-nitrogen type flame retardants containing triazole units. Polym. Degrad. Stab. 2023, 208, 110236. [Google Scholar] [CrossRef]
- Terekhov, V.E.; Aleshkevich, V.V.; Afanaseva, E.S.; Nechausov, S.S.; Babkin, A.V.; Bulgakov, B.A.; Kepman, A.V.; Avdeev, V.V. Bis(4-cyanophenyl) phenyl phosphate as viscosity reducing comonomer for phthalonitrile resins. React. Funct. Polym. 2019, 139, 34–41. [Google Scholar] [CrossRef]
- Lobanova, M.S.; Aleshkevich, V.V.; Yablokova, M.Y.; Morozov, O.S.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V.; Bulgakov, B.A. Kinetics of the oxidative aging of phthalonitrile resins and their effects on the mechanical properties of thermosets. Thermochim. Acta 2023, 724, 179492. [Google Scholar] [CrossRef]
- Lobanova, M.; Aleshkevich, V.; Babkin, A.; Kepman, A.; Avdeev, V.; Morozov, O.; Bulgakov, B. Effect of post-curing temperature on the retention of mechanical strength of phthalonitrile thermosets and composites after a long-term thermal oxidative aging. Polym. Compos. 2023, 44, 8330–8343. [Google Scholar] [CrossRef]
- Keller, T.M.; Dominguez, D.D. High temperature resorcinol-based phthalonitrile polymer. Polymer 2005, 46, 4614–4618. [Google Scholar] [CrossRef]
- Cao, G.P.; Chen, W.J.; Liu, X.B. Synthesis and thermal properties of the thermosetting resin based on cyano functionalized benzoxazine. Polym. Degrad. Stab. 2008, 93, 739–744. [Google Scholar] [CrossRef]
- ASTM Standard D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Shankwalkar, S.G.; Cruz, C. Thermal Degradation and Weight Loss Characteristics of Commercial Phosphate Esters. Ind. Eng. Chem. Res. 1994, 33, 740–743. [Google Scholar] [CrossRef]
- Liu, C.; Yao, Q. Mechanism of thermal degradation of aryl bisphosphates and the formation of polyphosphates. J. Anal. Appl. Pyrolysis 2018, 133, 216–224. [Google Scholar] [CrossRef]
- Aleshkevich, V.; Morozov, O.; Babkin, A.; Kepman, A.; Bulgakov, B. High-performance C/C composites derived from phthalonitrile matrix CFRP via a few cycles of vacuum-assisted impregnation-carbonization. Compos. Part A 2024, 182, 108201. [Google Scholar] [CrossRef]
- Buch, X.; Shanahan, M.E.R. Thermal and thermo-oxidative ageing of an epoxy adhesive. Polym. Degrad. Stab. 2000, 68, 403–411. [Google Scholar] [CrossRef]
- Liu, Y.L.; Hsiue, G.H.; Lan, C.W.; Chiu, Y.S. Phosphorus-containing epoxy for flame retardance: IV. Kinetics and mechanism of thermal degradation. Polym. Degrad. Stab. 1997, 56, 291–299. [Google Scholar] [CrossRef]
Sample | Mass, % | ||
---|---|---|---|
DPB | PPhPN | APN | |
PN50 | 15 | 50 | 35 |
PN30 | 35 | 30 | 35 |
PN15 | 50 | 15 | 35 |
PN10 | 55 | 10 | 35 |
Thermoset | Tg, °C | TOS5%, °C | Flexural Strength (σf), MPa | Flexural Modulus (Ef), GPa |
---|---|---|---|---|
PN10 | 330 | 507 | 141.8 ± 0.8 | 4.3 ± 0.1 |
PN15 | 327 | 507 | 138.6 ± 9.2 | 4.3 ± 0.1 |
PN30 | 352 | 498 | 140.2 ± 9.5 | 4.4 ± 0.1 |
PN50 | 350 | 470 | 140.0 ± 4.4 | 4.7 ± 0.1 |
Sample | Glass Transition Temperature (Tg), °C | |||
---|---|---|---|---|
Initial | Aging Temperature, °C | |||
300 | 330 | 350 | ||
PN10 | 330 | 353 | 400 | 401 * |
PN15 | 328 | 353 | 397 | 397 ** |
PN30 | 352 | 378 | 367 * | 444 * |
PN50 | 350 | 372 | 380 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobanova, M.S.; Babkin, A.V.; Kepman, A.V.; Avdeev, V.V.; Morozov, O.S.; Bulgakov, B.A. Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets. Polymers 2024, 16, 2239. https://doi.org/10.3390/polym16162239
Lobanova MS, Babkin AV, Kepman AV, Avdeev VV, Morozov OS, Bulgakov BA. Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets. Polymers. 2024; 16(16):2239. https://doi.org/10.3390/polym16162239
Chicago/Turabian StyleLobanova, Marina Sergeevna, Alexandr Vladimirovich Babkin, Alexey Valeryevich Kepman, Victor Vasil’evich Avdeev, Oleg Sergeevich Morozov, and Boris Anatol’evich Bulgakov. 2024. "Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets" Polymers 16, no. 16: 2239. https://doi.org/10.3390/polym16162239
APA StyleLobanova, M. S., Babkin, A. V., Kepman, A. V., Avdeev, V. V., Morozov, O. S., & Bulgakov, B. A. (2024). Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets. Polymers, 16(16), 2239. https://doi.org/10.3390/polym16162239