Polypyrrole Derivatives: Preparation, Properties and Application
Abstract
:1. Introduction
2. The Types of PPy Derivatives
2.1. Side Substitution of PPy
2.2. N-Site Substitution of PPy
2.3. Copolymer-Based Pyrrole
3. The Preparation of PPy Derivatives
3.1. Electrochemical Method
3.2. Chemical Oxidation Method
4. Application of Polypyrrole Derivatives
4.1. Energy Storage
4.2. Biomedicine
4.3. Sensors
4.4. Corrosion Protection
4.5. Others
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Yang, H.; Liu, X.; Zeng, R.; Li, M.; Huang, Y.; Hu, X. Constructing Hierarchical Tectorum-like -Fe2O3/PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors. Angew. Chem. Int. Ed. 2017, 56, 1105–1110. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 2016, 22, 422–438. [Google Scholar] [CrossRef]
- Ding, Q.; Xu, X.; Yue, Y.; Mei, C.; Huang, C.; Jiang, S.; Wu, Q.; Han, J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Appl. Mater. Interfaces 2018, 10, 27987–28002. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, X.; Zhang, L.; Zhao, J.; Hu, L.; Wang, S. Enhanced photothermal and chemotherapy of pancreatic tumors by degrading the extracellular matrix. Colloids Surf. B Biointerfaces 2023, 221, 113010. [Google Scholar] [CrossRef]
- Lee, R.J.; Temmer, R.; Tamm, T.; Aabloo, A.; Kiefer, R. Renewable antioxidant properties of suspensible chitosan-polypyrrole composites. React. Funct. Polym. 2013, 73, 1072–1077. [Google Scholar] [CrossRef]
- Jang, J.; Oh, J.H. Fabrication of a Highly Transparent Conductive Thin Film from Polypyrrole/Poly (methyl methacrylate) Core/Shell Nanospheres. Adv. Funct. Mater. 2005, 15, 494–502. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, J.Y.; Lee, D.S. Novel conducting soluble polypyrrole composite with a polymeric co-dopant. Synth. Met. 2000, 114, 347–353. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhang, W.; Fei, G.; Shu, K.; Sun, L.; Tian, S.; Niu, H.; Wang, M.; Hu, G.; et al. A Simple Route to Fabricate Ultralong and Uniform Polypyrrole Nanowires with High Electrochemical Capacitance for Supercapacitor Electrodes. ACS Appl. Polym. Mater. 2023, 5, 1254–1263. [Google Scholar] [CrossRef]
- Camurlu, P. Polypyrrole derivatives for electrochromic applications. RSC Adv. 2014, 4, 55832–55845. [Google Scholar] [CrossRef]
- Jarosz, T.; Ledwon, P. Electrochemically Produced Copolymers of Pyrrole and Its Derivatives: A Plentitude of Material Properties Using “Simple” Heterocyclic Co-Monomers. Materials 2021, 14, 281. [Google Scholar] [CrossRef]
- Texidó, R.; Anguera, G.; Colominas, S.; Borrós, S.; Sánchez-García, D. Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability. Polymers 2019, 11, 1068. [Google Scholar] [CrossRef] [PubMed]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M. Grafting of Polypyrrole-3-carboxylic Acid to the Surface of Hexamethylene Diisocyanate-Functionalized Graphene Oxide. Nanomaterials 2019, 9, 1095. [Google Scholar] [CrossRef] [PubMed]
- Czichy, M.; Zassowski, P.; Jarosz, T.; Gońka, E.; Janiga, E.; Stępień, M.; Łapkowski, M. Mechanism of 3,4-diarylpyrrole electrooxidation. Electrochim. Acta 2016, 200, 296–304. [Google Scholar] [CrossRef]
- Santos, A.F.L.O.M.; da Silva, M.A.V.R. Molecular energetics of Alkyl pyrrolecarboxylates: Calorimetric and computational study. J. Phys. Chem. A 2013, 117, 5195–5204. [Google Scholar] [CrossRef] [PubMed]
- Mizera, A.; Grabowski, S.J.; Ławniczak, P.; Wysocka-Żołopa, M.; Dubis, A.T.; Łapiński, A. A study of the optical, electrical and structural properties of poly (pyrrole-3, 4-dicarboxylic acid). Polymer 2019, 164, 142–153. [Google Scholar] [CrossRef]
- Mizera, A.; Dubis, A.T.; Łapiński, A. Density functional theory studies of polypyrrole and polypyrrole derivatives; substituent effect on the optical and electronic properties. Polymer 2022, 255, 125127. [Google Scholar] [CrossRef]
- Toufik, H.; Bouzzine, S.M.; Ninis, O.; Lamchouri, F.; Aberkane, M.; Hamidi, M.; Bouachrine, M. Opto-electronic properties and molecular design of new materials based on pyrrole studied by DFT. Res. Chem. Intermed. 2012, 38, 1375–1388. [Google Scholar] [CrossRef]
- Iftikhar, F.J.; Shah, A.; Baker, P.G.; Iwuoha, E.I.; Haider, A.; Zia, M.A.; Nisar, J.; Siddiq, M.; Shah, A.H. Poly (phenazine 2,3-diimino(pyrrole-2-yl)) as Redox Stimulated Actuator Material for Selected Organic Dyes. J. Electrochem. Soc. 2017, 164, B785–B791. [Google Scholar] [CrossRef]
- Dashairya, L.; Sahu, A.; Saha, P. Stearic acid treated polypyrrole-encapsulated melamine formaldehyde superhydrophobic sponge for oil recovery. Adv. Compos. Hybrid Mater. 2019, 2, 70–82. [Google Scholar] [CrossRef]
- Bellanger, H.; Darmanin, T.; de Givenchy, E.T.; Guittard, F. Superhydrophobic hollow spheres by electrodeposition of fluorinated poly (3,4-ethylenedithiopyrrole). RSC Adv. 2012, 2, 10899–10906. [Google Scholar] [CrossRef]
- Santos, E.S.; Reis, V.S.; Guimaraes, L.; Nascimento, C.S., Jr. Molecular wires formed from native and push-pull derivatives polypyrroles and β-cyclodextrins: A HOMO-LUMO gap theoretical investigation. Chem. Phys. Lett. 2019, 730, 141–146. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Jarosz, T.; Herman, A.P.; Turczyn, R.; Boncel, S.; Zak, J.K. The effect of solvent on the synthesis and physicochemical properties of poly(3,4-ethylenedioxypyrrole). Synth. Met. 2016, 217, 231–236. [Google Scholar] [CrossRef]
- Fradin, C.; Iii, H.S.; Amigoni, S.; Guittard, F.; Darmanin, T. Resistant amphiphobic textile coating by plasma induced polymerization of a pyrrole derivative grafted to silica nanoparticles and short fluorinated alkyl chains. Mater. Today Commun. 2022, 30, 103171. [Google Scholar] [CrossRef]
- Erdeger, M.; Kiskan, B.; Gungor, F.S. Synthesis and characterization of pyrrole-based benzoxazine monomers and polymers. Eur. Polym. J. 2022, 179, 111532. [Google Scholar] [CrossRef]
- Ishii, K.; Sato, K.; Oaki, Y.; Imai, H. Highly porous polymer dendrites of pyrrole derivatives synthesized through rapid oxidative polymerization. Polym. J. 2019, 51, 11–18. [Google Scholar] [CrossRef]
- Gupta, S.; Taboubi, O.; Acharya, U.; Lhotka, M.; Pokorný, V.; Morávková, Z.; Hromádková, J.; Bober, P. Nanostructured poly(N-methyl pyrrole) with enhanced conductivity and capacitance. Synth. Met. 2022, 29, 117134. [Google Scholar] [CrossRef]
- Pandule, S.; Oprea, A.; Barsan, N.; Weimar, U.; Persaud, K. Synthesis of poly-[2,5-di(thiophen-2-yl)-1H-pyrrole] derivatives and the effects of the substituents on their properties. Synth. Met. 2014, 196, 158–165. [Google Scholar] [CrossRef]
- Seike, M.; Uda, M.; Suzuki, T.; Minami, H.; Higashimoto, S.; Hirai, T.; Nakamura, Y.; Fujii, S. Synthesis of Polypyrrole and Its Derivatives as a Liquid Marble Stabilizer via a Solvent-Free Chemical Oxidative Polymerization Protocol. ACS Omega 2022, 7, 13010–13021. [Google Scholar] [CrossRef]
- Kijima, M.; Hasegawa, H.; Shirakawa, H. Syntheses and properties of liquid crystalline N-substituted pyrroles and their polymers. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 2691–2698. [Google Scholar] [CrossRef]
- Camurlu, P.; Eren, E.; Gultekin, C. A Solution-processible, n-dopable polypyrrole derivative. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4847–4853. [Google Scholar] [CrossRef]
- Alizadeh, N.; Akbarinejad, A. Soluble fluorescent polymeric nanoparticles based on pyrrole derivatives: Synthesis, characterization and their structure dependent sensing properties. J. Mater. Chem. C 2015, 3, 9910–9920. [Google Scholar] [CrossRef]
- Guven, N.; Camurlu, P.; Desde, M.; Yucel, B. Post Polymerization Functionalization of a Soluble Poly (2,5-dithienylpyrrole) Derivative via Click Chemistry. J. Electrochem. Soc. 2017, 164, H430–H436. [Google Scholar] [CrossRef]
- Wang, W.; Yu, D.; Tian, F. Photoluminescence of a soluble polypyrrole based on N-vinylpyrrole. J. Lumin. 2010, 130, 494–497. [Google Scholar] [CrossRef]
- Lv, G.; Zhang, S.; Wang, G.; Shao, J.; Tian, H.; Yu, D. A methacryl ethyl-functionalized soluble polypyrrole: Synthesis, characterization, and potentiality in rapid fabrication of high-aspect-ratio pillar arrays. React. Funct. Polym. 2017, 111, 44–52. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, G.; Lv, G.; Yu, D.; Ding, Y. Synthesis and fluorescence properties of a soluble polypyrrole derivative based on a dipyrrole monomer. Synth. Met. 2014, 195, 185–192. [Google Scholar] [CrossRef]
- Almeida, A.K.; Dias, J.M.; Silva, A.J.C.; Santos, D.P.; Navarro, M.; Tonholo, J.; Goulart, M.O.; Ribeiro, A.S. Conjugated and fluorescent polymer based on dansyl-substituted pyrrole prepared by electrochemical polymerization in acetonitrile containing boron trifluoride diethyl etherate. Electrochim. Acta 2014, 122, 50–56. [Google Scholar] [CrossRef]
- Hu, B.; Li, C.Y.; Chu, J.W.; Liu, Z.C.; Zhang, X.L.; Jin, L. Electrochemical and Electrochromic Properties of Polymers Based on 2,5-di(2-thienyl)-1H-pyrrole and Different Phenothiazine Units. J. Electrochem. Soc. 2019, 166, H1–H11. [Google Scholar] [CrossRef]
- Coelho, E.C.; Nascimento, V.B.; Ribeiro, A.S.; Navarro, M. Electrochemical and optical properties of new electrochromic and fluorescent nitrobenzoyl polypyrrole derivatives. Electrochim. Acta 2014, 123, 441–449. [Google Scholar] [CrossRef]
- Da Silva, A.J.C.; Nogueira, F.A.R.; Tonholo, J.; Ribeiro, A.S. Dual-type electrochromic device based on polypyrrole and polythiophene derivatives. Sol. Energy Mater. Sol. Cells 2011, 95, 2255–2259. [Google Scholar] [CrossRef]
- Fabregat, G.; Alemán, C.; Casas, M.T.; Armelin, E. Controlling the morphology of poly (N-cyanoethylpyrrole). J. Phys. Chem. B 2012, 116, 5064–5070. [Google Scholar] [CrossRef]
- McCarthy, C.P.; McGuinness, N.B.; Carolan, P.B.; Fox, C.M.; Alcock-Earley, B.E.; Breslin, C.B.; Rooney, A.D. Electrochemical Deposition of Hollow N-Substituted Polypyrrole Microtubes from an Acoustically Formed Emulsion. Macromolecules 2013, 46, 1008–1016. [Google Scholar] [CrossRef]
- McCarthy, C.P.; Herdman, K.M.; Rooney, D.; Alcock-Earley, B.; Breslin, C.B. Electrochemical formation of N–substituted polypyrrole nanowires, microwires and open microtubes and their decoration with copper structures. Synth. Met. 2021, 280, 116881. [Google Scholar] [CrossRef]
- McCarthy, C.P.; McGuinness, N.B.; Alcock-Earley, B.E.; Breslin, C.B.; Rooney, A.D. Facile template-free electrochemical preparation of poly[N-(2-cyanoethyl)pyrrole] nanowires. Electrochem. Commun. 2012, 20, 79–82. [Google Scholar] [CrossRef]
- Ismar, E.; Sarac, A.S. Facile synthesis of poly[1-p (tolylsulfonyl) pyrrole] via Ce (IV)- pyrrole redox initiating system and polyacrylonitrile blended nanofibers. Polym. Adv. Technol. 2018, 29, 2440–2448. [Google Scholar] [CrossRef]
- Miao, D.; Di Michele, V.; Gagnon, F.; Aumaitre, C.; Lucotti, A.; Del Zoppo, M.; Lirette, F.; Tommasini, M.; Morin, J.F. Pyrrole-Embedded Linear and Helical Graphene Nanoribbons. J. Am. Chem. Soc. 2021, 143, 11302–11308. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zhu, K.; Zhang, S.; Yu, D. The green preparation of poly N-vinylpyrrole nanoparticles. RSC Adv. 2016, 6, 90354–90359. [Google Scholar] [CrossRef]
- Gu Y, Qiao Y Q, Meng Y S, One-step synthesis of well-dispersed polypyrrole copolymers under gamma-ray irradiation. Polym. Chem. 2021, 12, 645–649. [CrossRef]
- Komiyama, H.; Komura, M.; Akimoto, Y.; Kamata, K.; Iyoda, T. Longitudinal and Lateral Integration of Conducting Polymer Nanowire Arrays via Block-Copolymer-Templated Electropolymerization. Chem. Mater. 2015, 27, 4972–4982. [Google Scholar] [CrossRef]
- Hatamzadeh, M.; Mohammad-Rezaei, R.; Jaymand, M. Chemical and electrochemical grafting of polypyrrole onto thiophene-functionalized polystyrene macromonomer. Mater. Sci. Semicond. Process. 2015, 31, 463–470. [Google Scholar] [CrossRef]
- Silva, A.J.C.; Ferreira, S.M.; Santos, D.D.P.; Navarro, M.; Tonholo, J.; Ribeiro, A.S. A multielectrochromic copolymer based on pyrrole and thiophene derivatives. Sol. Energy Mater. Sol. Cells 2012, 103, 108–113. [Google Scholar] [CrossRef]
- Silva, A.J.C.; Nogueira, V.C.; Santos, T.E.; Buck, C.J.; Worrall, D.R.; Tonholo, J.; Mortimer, R.J.; Ribeiro, A.S. Copolymerisation as a way to enhance the electrochromic properties of an alkylthiophene oligomer and a pyrrole derivative: Copolymer of 3,3‴dihexyl-2,2′:5′,2″:5″,2‴-quaterthiophene with (R)-(-)-3-(1-pyrrolyl)propyl-N-(3,5-dinitrobenzoyl). Sol. Energy Mater. Sol. Cells 2015, 134, 122–132. [Google Scholar] [CrossRef]
- Najari, A.; Beaupré, S.; Allard, N.; Ouattara, M.; Pouliot, J.R.; Charest, P.; Besner, S.; Simoneau, M.; Leclerc, M. Thieno, Furo, and Selenopheno[3,4-c]pyrrole-4,6-dione Copolymers: Air-Processed Polymer Solar Cells with Power Conversion Efficiency up to 7.1%. Adv. Energy Mater. 2015, 5, 1501213. [Google Scholar] [CrossRef]
- Leysen, P.; Quattrosoldi, S.; Salatelli, E.; Koeckelberghs, G. Investigation of the dithieno[3,2-b:2′,3′-d]pyrrole polymerization using cross-coupling and cationic mechanisms. Polym. Chem. 2019, 10, 1010–1017. [Google Scholar] [CrossRef]
- Baskan, H.; Ismar, E.; Karakas, H.; Sarac, A.S. Nanocomposite structures of polypyrrole derivatives and poly (acrylonitrile-co-itaconic acid) produced by in situ polymerization as carbon nanofiber precursor. Polym. Adv. Technol. 2019, 31, 536–543. [Google Scholar] [CrossRef]
- Jung, E.Y.; Park, C.S.; Jang, H.J.; Bae, G.T.; Shin, B.J.; Tae, H.S. Synthesis and characterization of poly(pyrrole-co-aniline) copolymer using atmospheric pressure plasma polymerization. Mol. Cryst. Liquld Cryst. 2022, 733, 103–113. [Google Scholar] [CrossRef]
- Lv, D.; Shen, W.; Chen, W.; Wang, Y.; Tan, R.; Zhao, M.; Song, W. Emerging poly(aniline co-pyrrole) nanocomposites by in-situ polymerized for high-performance flexible ammonia sensor. Sens. Actuators A Phys. 2023, 349, 114078. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kaur, A. Enhanced and selective ammonia sensing behaviour of poly(aniline co-pyrrole) nanospheres chemically oxidative polymerized at low temperature. J. Ind. Eng. Chem. 2015, 26, 143–148. [Google Scholar] [CrossRef]
- Ou, X.H.; Xu, X.C. A simple method to fabricate poly(aniline-co-pyrrole) with highly improved electrical conductivity via pre-polymerization. RSC Adv. 2016, 6, 13780–13785. [Google Scholar] [CrossRef]
- Shen, L.; Huang, X. Tuning the morphologies and electrical properties of azobenzene-4,4‘-dicarboxylate-doped polypyrrole via ultraviolet light irradiation and medium pH alteration. Polymer 2019, 176, 188–195. [Google Scholar] [CrossRef]
- Bideau, B.; Cherpozat, L.; Loranger, E.; Daneault, C. Conductive nanocomposites based on TEMPO-oxidized cellulose and poly(N-3-aminopropylpyrrole-co-pyrrole). Ind. Crops Prod. 2016, 93, 136–141. [Google Scholar] [CrossRef]
- Abbasian, M.; Massomi, B.; Rashidzadeh, B.; Bahrami, H. Versatile method for synthesis of electrically conductive polypyrrole-polystyrene clay nanocomposites using ATRP and chemical polymerisation methods. J. Exp. Nanosci. 2014, 10, 844–858. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, Q.; Lu, H.; Li, Y. Towards enhanced electrochemical capacitance with self-assembled synthesis of poly(pyrrole-co-o-toluidine) nanoparticles. J. Appl. Polym. Sci. 2016, 133, 42995. [Google Scholar] [CrossRef]
- Lu, W.; Yin, S.; Wu, X.; Luo, Q.; Wang, E.; Cui, L.; Guo, C.Y. Aniline-pyrrole copolymers formed on single-walled carbon nanotubes with enhanced thermoelectric performance. J. Mater. Chem. C 2021, 9, 2898–2903. [Google Scholar] [CrossRef]
- Huang, H.; Strømme, M.; Gogoll, A.; Sjödin, M. Potential Tuning in Quinone-pyrrole Dyad Based Conducting Redox Polymers. Electrochim. Acta 2021, 389, 138758. [Google Scholar] [CrossRef]
- Gholami, M.; Nia, P.M.; Alias, Y. Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer. Appl. Surf. Sci. 2015, 357, 806–813. [Google Scholar] [CrossRef]
- Bell, K.J.J.; Sabury, S.; Phan, V.; Wagner, E.M.; Hawks, A.M.; Bartlett, K.A.; Collier, G.S. Synthesis of 1,4-dihydropyrrolo[3,2-b]pyrrole-containing donor-acceptor copolymers and their optoelectronic properties. J. Polym. Sci. 2024, 62, 2975–2987. [Google Scholar] [CrossRef]
- Kayser, L.V.; Vollmer, M.; Welnhofer, M.; Krikcziokat, H.; Meerholz, K.; Arndtsen, B.A. Metal-Free, Multicomponent Synthesis of Pyrrole-Based π-Conjugated Polymers from Imines, Acid Chlorides, and Alkynes. J. Am. Chem. Soc. 2016, 138, 10516–10521. [Google Scholar] [CrossRef] [PubMed]
- Domagala, A.; Domagala, W.; Ledwon, P.; Musiol, M.; Janeczek, H.; Stolarczyk, A.; Kurcok, P.; Adamus, G.; Lapkowski, M. N-Oligo (3-hydroxybutyrate)-functionalized polypyrroles: Towards bio-erodible conducting copolymers. Polym. Int. 2016, 65, 1395–1404. [Google Scholar] [CrossRef]
- Kacimi, R.; Chemek, M.; Bouchikhi, A.; Lgaz, H.; Azaid, A.; Raftani, M.; Bennani, M.N.; Lee, H.-S.; Alimi, K.; Bejjit, L.; et al. Synthesis, experimental and theoretical characterization of a new copolymer bearing pyrrole and anthracene units. J. Photochem. Photobiol. A Chem. 2022, 432, 114056. [Google Scholar] [CrossRef]
- Miksa, B.; Steinke, U.; Trzeciak, K.; Sniechowska, J.; Rozanski, A. Thermostable Fluorescent Capsules with the Cross-Linked Heterocyclic Polymer Shell from Poly(pyrrole-phenosafranin). Macromol. Chem. Phys. 2021, 222, 2000396. [Google Scholar] [CrossRef]
- Karami, H.; Jafari, S.; Goli, F. Synthesis of Aniline—Pyrrole Copolymer Nanostructures by the Pulsed Galvanostatic Polymerization. Int. J. Electrochem. Sci. 2016, 11, 3056–3073. [Google Scholar] [CrossRef]
- Almeida, A.K.; Dias, J.M.; Santos, D.P.; Nogueira, F.A.; Navarro, M.; Tonholo, J.; Lima, D.J.; Ribeiro, A.S. A magenta polypyrrole derivatised with Methyl Red azo dye: Synthesis and spectroelectrochemical characterisation. Electrochim. Acta 2017, 240, 239–249. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Diaz, A.F.; Gill, W.D.; Grant, P.M.; Street, G.B.; Gardini, G.P.; Kwak, J.F. Polypyrrole: An electrochemically synthesized conducting organic polymer. Synth. Met. 1980, 1, 329–336. [Google Scholar] [CrossRef]
- Wolfart, F.; Hryniewicz, B.M.; Marches, L.F. Direct electrodeposition of imidazole modified poly (pyrrole) copolymers: Synthesis, characterization and supercapacitive properties. Electrochim. Acta 2017, 243, 260–269. [Google Scholar] [CrossRef]
- Astratine, L.; Magner, E.; Cassidy, J.; Betts, A. Electrodeposition and Characterisation of Copolymers Based on Pyrrole and 3,4-Ethylenedioxythiophene in BMIM BF4 Using a Microcell Configuration. Electrochim. Acta 2014, 115, 440–448. [Google Scholar] [CrossRef]
- Husson, J.; Lakard, S.; Monney, S.; Buron, C.; Lakard, B. Elaboration and characterization of carboxylic acid-functionalized polypyrrole films. Synth. Met. 2016, 220, 247–254. [Google Scholar] [CrossRef]
- Diaw, A.; Gningue-Sall, D.; Yassar, A.; Aaron, J. New poly(p-substituted-N-phenylpyrrole)s. Electrosynthesis, electrochemical properties and characterization. Synth. Met. 2013, 179, 74–85. [Google Scholar] [CrossRef]
- Yi, J.; Tang, D.; Song, D.; Wu, X.; Shen, Z.; Li, M. Selective oxidation of benzyl alcohol on poly (4-(3-(pyrrol-1-yl)propionamido)-2,2,6,6-tetramethylpiperidin-1-yloxy) electrode. J. Solid State Electrochem. 2015, 19, 2291–2297. [Google Scholar] [CrossRef]
- Schneider, S.; Füser, M.; Bolte, M.; Terfort, A. Self-assembled monolayers of aromatic pyrrole derivatives: Electropolymerization and electrocopolymerization with pyrrole. Electrochim. Acta 2017, 246, 853–863. [Google Scholar] [CrossRef]
- Kurtay, G.; Soganci, T.; Sarikavak, K.; Ak, M.; Güllü, M. Synthesis and Electrochemical Characterization of a New Benzodioxocine-fused Poly (N-methylpyrrole) Derivative: A Joint Experimental and DFT Study. New J. Chem. 2020, 44, 18929–18941. [Google Scholar] [CrossRef]
- Ledwon, P.; Brzeczek, A.; Pluczyk, S.; Jarosz, T.; Kuznik, W.; Walczak, K.; Lapkowski, M. Synthesis and electrochemical properties of novel, donor–acceptor pyrrole derivatives with 1,8-naphthalimide units and their polymers. Electrochim. Acta 2014, 128, 420–429. [Google Scholar] [CrossRef]
- Diaw, A.K.D.; Gningue-Sall, D.; Fall, M.; Yassar, A.; Aaron, J.J. Synthesis and electropolymerization of new phenylene-substituted dipyrridyls. Electrochemical and spectroscopic characterization of the resulting polymers. Asian J. Chem. 2014, 26, 5973–5980. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnakanth, S.; Mathew, J.; Pomerantz, Z.; Lellouche, J.-P.; Ghosh, S. Effect of N-α Substitution on the Electropolymerization of N-Substituted Pyrroles: Structure–Reactivity Relationship Studies. J. Phys. Chem. C 2014, 118, 2570–2579. [Google Scholar] [CrossRef]
- Camurlu, P.; Guven, N.; Bicil, Z. Ferrocene clicked polypyrrole derivatives: Effect of spacer group on electrochemical properties and post-polymerization functionalization. Des. Monomers Polym. 2016, 19, 212–221. [Google Scholar] [CrossRef]
- Fang, L.; Zhao, L.; Liang, X.; Xiao, H.; Qian, L. Effects of oxidant and dopants on the properties of cellulose/PPy conductive composite hydrogels. J. Appl. Polym. Sci. 2016, 133, 43759. [Google Scholar] [CrossRef]
- Lee, R.J.; Tamm, T.; Temmer, R.; Aabloo, A.; Kiefer, R. Two formation mechanisms and renewable antioxidant properties of suspensible chitosan-PPy and chitosan-PPy-TDA composites. Synth. Met. 2013, 164, 6–11. [Google Scholar] [CrossRef]
- Su, C.; Wang, L.; Xu, L.; Zhang, C. Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for Li-ion batteries. Electrochim. Acta 2013, 104, 302–307. [Google Scholar] [CrossRef]
- Patil, B.H.; Bulakhe, R.N.; Lokhande, C.D. Supercapacitive performance of chemically synthesized polypyrrole thin films: Effect of monomer to oxidant ratio. J. Mater. Sci. Mater. Electron. 2014, 25, 2188–2198. [Google Scholar] [CrossRef]
- Shi, K.; Zhitomirsky, I. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS Appl. Mater. Interfaces 2013, 5, 13161–13170. [Google Scholar] [CrossRef]
- Frackowiak, E.; Francois, B. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950. [Google Scholar] [CrossRef]
- Song, X.; Xue, X.; Xia, H.; Jin, L.; Tao, A.; Wang, Y.; Liang, J.; Liu, Y.; Zhang, P.; Tie, Z.; et al. Electrolyte initiated instaneous in-situ chemical polymerization of organic cathodes for ultralong-cycling magnesium ion batteries. Energy Storage Mater. 2023, 55, 426–435. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Li, C.; Zhang, H.; Liu, J.; Zhang, Q. Interface modification in high voltage spinel lithium-ion battery by using N-methylpyrrole as an electrolyte additive. Electrochim. Acta 2015, 178, 127–133. [Google Scholar] [CrossRef]
- Mukkabla, R.; Ojha, M.; Deepa, M. Poly(N-methylpyrrole) barrier coating and SiO2 fillers based gel electrolyte for safe and reversible Li–S batteries. Electrochim. Acta 2020, 334, 135571. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, X.; Wang, Y.; Qin, M.; Shi, Y.; Chen, Z.; Wang, W.; Cao, J.; Xu, J. Electrochemical Preparation of Poly(N-anthraquinoyl pyrrole) as High-Performance Cathode Materials for Organic Lithium-Ion Batteries. Energy Technol. 2022, 10, 2101140. [Google Scholar] [CrossRef]
- Arjomandi, J.; Mossa, N.K.I.; Jaleh, B. Electrochemical Synthesis and In Situ Spectroelectrochemistry of Conducting NMPy-TiO2 and ZnO Polymer Nanocomposites for Li Secondary Battery Applications. J. Appl. Polym. Sci. 2015, 132, 41526. [Google Scholar] [CrossRef]
- Li, X.; Han, X.; Liu, R.; Zhang, S.; Zhang, Y.; Cao, Y.; Wang, X.; Wang, R.; Yang, Z.; Sun, J. Tannic acid-polypyrrole multifunctional coating layer enhancing the interface effect and efficient Li-ion transport of a phosphorus anode. Nanoscale 2022, 14, 3625–3631. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Gao, H.; Jia, Y.; Wu, A.; Zhao, C.; Dong, Z.; Yu, J.; Zhao, Y.; Xie, H. Tetrakis (4-sulphophenyl) porphyrin cross-linked polypyrrole network with enhanced bulk conductivity and polysulfide regulation for improved Li-S battery performances. Chem. Eng. J. 2022, 447, 137428. [Google Scholar] [CrossRef]
- Lacerda, G.R.D.B.S.; dos Santos Junior, G.A.; Rocco, M.L.M.; Lavall, R.L.; Matencio, T.; Calado, H.D.R. Development of nanohybrids based on carbon nanotubes/P(EDOT-co-MPy) and P(EDOT-co-PyMP) copolymers as electrode materials for aqueous supercapacitors. Electrochim. Acta 2020, 335, 135637. [Google Scholar] [CrossRef]
- Moyseowicz, A.; González, Z.; Menéndez, R.; Gryglewicz, G. Three-dimensional poly(aniline-co-pyrrole)/thermally reduced graphene oxide composite as a binder-free electrode for high-performance supercapacitors. Compos. Part B Eng. 2018, 145, 232–239. [Google Scholar] [CrossRef]
- Ozkazanc, H.; Menkuer, M.; Gundogdu, O.; Ozkazanc, E. Multifunctional poly (N-methylpyrrole)/nano-oxide composites: Optoelectronic, charge transport and antibacterial properties. Polymer 2020, 189, 122188. [Google Scholar] [CrossRef]
- Yegin, B.; Ozkazanc, H.; Er, D.K.; Ozkazanc, E. Antimicrobial performance and charge transport mechanism of Poly(N-methylpyrrole)-boron nitride composite. Mater. Chem. Phys. 2022, 278, 125709. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Sharma, K.; Luong, J.H.; Gedanken, A. Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydr. Polym. 2020, 243, 116474. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Oves, M.; Almeelbi, T.; Al-Makishah, N.H.; Barakat, M. Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity. J. Colloid Interface Sci. 2017, 490, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Ozkazanc, E.; Yegin, B.; Güven, N.C.; Er, D.K.; Ozkazanc, H. Multifunctional P (Py/NMPy) copolymer doped by DBSA for electronic, photoelectric and biomedical applications. Synth. Met. 2022, 288, 117118. [Google Scholar] [CrossRef]
- Cabuk, M.; Yavuz, M.; Ibrahim Unal, H.; Alan, Y. Synthesis, characterization, and enhanced antibacterial activity of chitosan-based biodegradable conducting graft copolymers. Polym. Compos. 2015, 36, 497–509. [Google Scholar] [CrossRef]
- Zha, F.; Chen, W.; Lv, G.; Wu, C.; Hao, L.; Meng, L.; Zhang, L.; Yu, D. Effects of surface condition of conductive electrospun nanofiber mats on cell behavior for nerve tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111795. [Google Scholar] [CrossRef]
- Zha, F.; Chen, W.; Hao, L.; Wu, C.; Lu, M.; Zhang, L.; Yu, D. Electrospun cellulose-based conductive polymer nanofibrous mats: Composite scaffolds and their influence on cell behavior with electrical stimulation for nerve tissue engineering. Soft Matter 2020, 16, 6591–6598. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, G.; Casanovas, J.; Redondo, E.; Armelin, E.; Alemán, C. A rational design for the selective detection of dopamine using conducting polymers. Phys. Chem. Chem. Phys. 2014, 16, 7850–7861. [Google Scholar] [CrossRef]
- Fabregat, G.; Estrany, F.; Casas, M.T.; Alemán, C.; Armelin, E. Detection of dopamine using chemically synthesized multilayered hollow microspheres. J. Phys. Chem. B 2014, 118, 4702–4709. [Google Scholar] [CrossRef]
- Córdova-Mateo, E.; Poater, J.; Teixeira-Dias, B.; Bertran, O.; Estrany, F.; del Valle, L.J.; Solà, M.; Alemán, C. Electroactive polymers for the detection of morphine. J. Polym. Res. 2014, 21, 565. [Google Scholar] [CrossRef]
- Fabregat, G.; Córdova-Mateo, E.; Armelin, E.; Bertran, O.; Alemán, C. Ultrathin Films of Polypyrrole Derivatives for Dopamine Detection. J. Phys. Chem. C 2011, 115, 14933–14941. [Google Scholar] [CrossRef]
- Xia, J.; Ding, S.N.; Gao, B.H.; Sun, Y.M.; Wang, Y.H.; Cosnier, S.; Guo, X. A biosensing application based on quenching the enhanced electrochemiluminescence of poly [tris(N-bipyridylethyl)pyrrole] ruthenium (II) film by Au nanoparticles. J. Electroanal. Chem. 2013, 692, 60–65. [Google Scholar] [CrossRef]
- Darwish, H.M.B.; Okur, S. CO adsorption kinetics of ferrocene-conjugated polypyrrole using quartz microbalance technique. Sens. Actuators B Chem. 2014, 200, 325–331. [Google Scholar] [CrossRef]
- Aradilla, D.; Estrany, F.; Alemán, C. Polypyrrole derivatives as solvent vapor sensors. RSC Adv. 2013, 3, 20545–20558. [Google Scholar] [CrossRef]
- Iyogun, A.A.; Kumar, M.R.; Freund, M.S. Chemically diverse sensor arrays based on electrochemically copolymerized pyrrole and styrene derivatives. Sens. Actuators B Chem. 2015, 215, 510–517. [Google Scholar] [CrossRef]
- Truong, L.T.; Chikae, M.; Ukita, Y.; Takamura, Y. Labelless impedance immunosensor based on polypyrrole-pyrolecarboxylic acid copolymer for hCG detection. Talanta 2011, 85, 2576–2580. [Google Scholar] [CrossRef] [PubMed]
- Altun, A.; Apetrei, R.M.; Camurlu, P. The effect of copolymerization and carbon nanoelements on the performance of poly (2,5-di(thienyl)pyrrole) biosensors. Mater. Sci. Eng. C 2019, 105, 110069. [Google Scholar] [CrossRef]
- Ugo, P.; Sperni, L.; Moretto, L.M. Ion-exchange voltammetry of trace mercury (II) at glassy carbon electrodes coated with a cationic polypyrrole derivative. Application to pore-waters analysis. Electroanalysis 2010, 9, 1153–1158. [Google Scholar] [CrossRef]
- Lin, M.; Hu, X.; Ma, Z.; Chen, L. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Anal. Chim. Acta 2012, 746, 63–69. [Google Scholar] [CrossRef]
- Qin, J.; Jo, D.G.; Cho, M.; Lee, Y. Monitoring of early diagnosis of Alzheimer’s disease using the cellular prion protein and poly (pyrrole-2-carboxylic acid) modified electrode. Biosens. Bioelectron. 2018, 113, 82–87. [Google Scholar] [CrossRef]
- Coleone, A.P.; Barboza, B.H.; Batagin-Neto, A. Polypyrrole derivatives for detection of toxic gases: A theoretical study. Polym. Adv. Technol. 2021, 32, 4464–4478. [Google Scholar] [CrossRef]
- Lin, M.; Cho, M.; Choe, W.S.; Yoo, J.B.; Lee, Y. Polypyrrole nanowire modified with Gly-Gly-His tripeptide for electrochemical detection of copper ion. Biosens. Bioelectron. 2010, 26, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Rüger, F.; Schäfer, J.; Bakowski, U.; Keusgen, M.; Vornicescu, D. A Novel N-Substituted Pyrrole Based Surface Modification for Biosensing. Phys. Status Solidi A Appl. Mater. Sci. 2018, 215, 1800030. [Google Scholar] [CrossRef]
- Pandule, S.S.; Shisodia, S.U.; Pawar, R.P.; Chabukswar, V.V. Synthesis, Properties, and Ammonia Gas Sensing Applications of Poly-[1-(4-nitronaphthalen-1-yl)-2,5-di(thiophen-2-yl)-1H-pyrrole]. Polym. Technol. Eng. 2016, 56, 268–275. [Google Scholar] [CrossRef]
- Kwon, O.S.; Park, S.J.; Jang, J. A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. Biomaterials 2010, 31, 4740–4747. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, S.G.; Jun, J.; Shin, D.H.; Jang, J. Aptamer-Functionalized Multidimensional Conducting-Polymer Nanoparticles for an Ultrasensitive and Selective Field-Effect-Transistor Endocrine-Disruptor Sensors. Adv. Funct. Mater. 2014, 24, 6145–6153. [Google Scholar] [CrossRef]
- Na, W.; Park, J.W.; An, J.H.; Jang, J. Size-controllable ultrathin carboxylated polypyrrole nanotube transducer for extremely sensitive 17β-estradiol FET-type biosensors. J. Mater. Chem. B 2016, 4, 5052. [Google Scholar] [CrossRef]
- Kwon, O.S.; Ahn, S.R.; Park, S.J.; Song, H.S.; Lee, S.H.; Lee, J.S.; Hong, J.Y.; Lee, J.S.; You, S.A.; Yoon, H.; et al. Ultrasensitive and Selective Recognition of Peptide Hormone Using Close-Packed Arrays of hPTHR-Conjugated Polymer Nanoparticles. ACS Nano 2012, 6, 5549. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Lyu, Z.; Li, S.; Ruan, X.; Fei, M.; Zhou, Y.; Niu, X.; Zhu, W.; Du, D.; Lin, Y. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens. Bioelectron. 2021, 191, 113434. [Google Scholar] [CrossRef]
- Balciunas, D.; Plausinaitis, D.; Ratautaite, V.; Ramanaviciene, A.; Ramanavicius, A. Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing. Talanta 2022, 241, 123252. [Google Scholar] [CrossRef]
- Alberti, G.; Zanoni, C.; Magnaghi, L.R.; Biesuz, R. Ascorbic Acid Sensing by Molecularly Imprinted Electrosynthesized Polymer (e-MIP) on Screen-Printed Electrodes. Chemosensors 2023, 11, 348. [Google Scholar] [CrossRef]
- DeBerry, D.W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J. Electrochem. Soc. 1985, 132, 1022–1026. [Google Scholar] [CrossRef]
- Mengoli, G.; Munari, M.T.; Bianco, P.; Musiani, M.M. Anodic synthesis of polyaniline coatings onto Fe sheets. J. Appl. Polym. Sci. 2010, 26, 4247–4257. [Google Scholar] [CrossRef]
- Zeybek, B.; Aksun, E. Electrodeposition of poly(N-methylpyrrole) on stainless steel in the presence of sodium dodecylsulfate and its corrosion performance. Prog. Org. Coat. 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Zeybek, B.; Aksun, E.; Uge, A. Investigation of corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/multi-walled carbon nanotubes composite coatings on the stainless steel. Mater. Chem. Phys. 2015, 163, 11–23. [Google Scholar] [CrossRef]
- Hao, L.; Lv, G.; Zhou, Y.; Zhu, K.; Dong, M.; Liu, Y.; Yu, D. High Performance Anti-Corrosion Coatings of Poly (Vinyl Butyral) Composites with Poly N-(vinyl)pyrrole and Carbon Black Nanoparticles. Materials 2018, 11, 2307. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zhu, K.; Lv, G.; Yu, D. A comparative study of nanoscale poly N-(vinyl) pyrrole in polyvinyl butyral coatings for the anti-corrosion property of zinc: Nanotubes vs nanoparticles. Prog. Org. Coat. 2019, 136, 105251. [Google Scholar] [CrossRef]
- Thi, Q.V.; Lim, S.; Jang, E.; Kim, J.; Van Khoi, N.; Tung, N.T.; Sohn, D. Silica particles wrapped with poly (aniline-co-pyrrole) and reduced graphene oxide for advanced microwave absorption. Mater. Chem. Phys. 2020, 244, 122691. [Google Scholar] [CrossRef]
- Shen, J.; Feng, J.; Li, L.; Tong, G.; He, Y. Synthesis and excellent electromagnetic absorbing properties of copolymer (N-methylpyrrole-co-pyrrole) and Ba–Nd–Cr ferrite. J. Alloys Compd. 2015, 632, 490–499. [Google Scholar] [CrossRef]
- Lv, G.; Tian, H.; Shao, J.; Yu, D. Synthesis, characterization, and efficient electrohydrodynamic patterning with a high aspect ratio of a soluble oligomerpyrrole derivative. React. Funct. Polym. 2019, 137, 116–122. [Google Scholar] [CrossRef]
- Wang, G.; Lv, G.; Zhang, S.; Shao, J.; Li, X.; Tian, H.; Yu, D.; Zhang, L. A photocurable leaky dielectric for highly electrical insulating electrohydrodynamic micro-/nanopatterns. Soft Matter 2016, 12, 8819–8824. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Zhang, S.; Shao, J.; Wang, G.; Tian, H.; Yu, D. Rapid fabrication of electrohydrodynamic micro-/nanostructures with high aspect ratio using a leaky dielectric photoresist. React. Funct. Polym. 2017, 118, 1–9. [Google Scholar] [CrossRef]
PPy Derivatives | Analyte | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|
poly(aniline-co-pyrrole) nanocomposites | NH3 | 0.05–20 ppm | 0.05 ppm | [56] |
poly(aniline-co-pyrrole) nanospheres | NH3 | 10–80 ppm | 10 ppm | [57] |
PNMPy | dopamine | 0.5–2 mM | 0.5 mM | [109] |
poly[N-(2-cyanoethyl)pyrrole] | dopamine | 10–100 μM | 6 mM | [111] |
ferrocene-conjugated PPy | CO | 0–2000 ppm | 100 ppm | [113] |
PPy-pyrole-2-carboxylic acid copolymer | hCG | 100 pg mL−1 to 40 ng mL−1 | 2.3 pg mL−1 | [116] |
P(SNS-An-co-EDOT) | O2 | 0.01–5.0 mM | 1.9 μM | [117] |
poly-[1-methyl-3-(pyrrol-1-ylmethyl)pyridinium] | HgCl42− | 70–80 nM | 0.1 nM | [118] |
PPy-COOH nanotube arrays | Cu2+ | 0.1–30 μM | 46 nM | [119] |
poly(pyrrole-2-carboxylic acid) | Amyloid-beta oligomers | 0–10−4 pM | 10−4 pM | [120] |
overoxidized PPy-COOH nanowire | Cu2+ | 20–300 nM | 20 nM | [122] |
Poly-[1-(4-nitronaphthalen-1-yl)-2,5-di(thiophen-2-yl)-1H-pyrrole] | NH3 | 1–300 ppm | 1 ppm | [124] |
PPy-COOH nanotubes | VEGF | 0–4 pm | 400 fM | [125] |
PPy-COOH nanoparticles | bisphenol A | 1–104 fM | 1 fM | [126] |
PPy-COOH nanotubes | 17β-Estradiol | 1 fM to 1 nM | 1 fM | [127] |
PPy-COOH nanoparticles | peptide hormone | 4.8 fM to 480 pM | 48 fM | [128] |
molecularly imprinted PPy nanotubes | glyphosate | 2.5–350 ng mL−1 | 1.94 ng mL−1 | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, L.; Dong, C.; Yu, D. Polypyrrole Derivatives: Preparation, Properties and Application. Polymers 2024, 16, 2233. https://doi.org/10.3390/polym16162233
Hao L, Dong C, Yu D. Polypyrrole Derivatives: Preparation, Properties and Application. Polymers. 2024; 16(16):2233. https://doi.org/10.3390/polym16162233
Chicago/Turabian StyleHao, Lu, Changyi Dong, and Demei Yu. 2024. "Polypyrrole Derivatives: Preparation, Properties and Application" Polymers 16, no. 16: 2233. https://doi.org/10.3390/polym16162233
APA StyleHao, L., Dong, C., & Yu, D. (2024). Polypyrrole Derivatives: Preparation, Properties and Application. Polymers, 16(16), 2233. https://doi.org/10.3390/polym16162233