Composites from Recycled Polypropylene and Carboxymethylcellulose with Potential Uses in the Interior Design of Vehicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Obtain Methods
2.2.2. Characterization Methods
Structural Analysis—SEM (Scanning Electron Microscopy) Analysis
FTIR Analysis
Dielectric Tests
Influence of Water Exposure on Electrical Properties
Determination of Water Absorption
- c—the amount of water absorbed (%);
- m1—sample mass (mg) dry, before immersion;
- m2—sample mass (mg) after immersion;
- m3—mass of the sample (mg) after each cycle of 24 h of immersion in water
Determination of Resistance to the Action of UV Radiation
Determination of Resistance to the Temperature
2.2.3. Statistical Analysis
3. Results and Discussion
3.1. Structural Analysis—SEM (Scanning Electron Microscopy) Analysis
3.2. FTIR Analysis
- -
- A broad band between 3600 and 3200 cm−1 due to the stretching vibrations of the hydroxyl groups (–OH) in cellulose and carboxylic acids.
- -
- A band between 2950 and 2800 cm−1 due to the stretching vibrations of the C-H (e.g., methylene and methine) bonds in the glucose units of cellulose.
- -
- Low-intensity band at 1749 cm−1 due to carbonyl (C=O) stretching [48].
- -
- A band between 1591 and 1420 cm−1 assigned to the symmetric and asymmetric stretching vibrations of the carboxylate groups (COO–). They are some of the most characteristic peaks for CMC and are often used to identify its presence in a sample.
- -
- A band between 1395 and 1295 cm−1 due to in-plane bending vibrations of the C–H bonds.
- -
- A band between 1177 and 921 cm−1 attributed to the stretching vibrations within the C-O-C linkages between the glucose units in the cellulose backbone.
3.3. Variation of Dielectric Characteristics
3.3.1. Initial Dielectric Characteristics
3.3.2. Influence of Water Immersion on Dielectric Properties
Determination of Water Absorption
3.3.3. Variation of Dielectric Characteristics with Temperature
3.3.4. Variation of Dielectric Characteristics with UV Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mihai, F.C.; Gündoğdu, S.; Markley, L.A.; Olivelli, A.; Khan, F.R.; Gwinnett, C.; Gutberlet, J.; Reyna-Bensusan, N.; Llanquileo-Melgarejo, P.; Meidiana, C.; et al. Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. Sustainability 2022, 14, 20. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Kazemi, M.J.; Kabir, S.K.F.; Fini, E.H. State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resour. Conserv. Recycl. 2021, 174, 105776. [Google Scholar] [CrossRef]
- Petrovič, A.; Čolnik, M.; Prša, A.; Fan, Y.V.; Škerget, M.; Knez, Ž.; Klemeš, J.J.; Čuček, L. Comparative Analysis of Virgin and Recycled Thermoplastic Polymer based on Thermochemical Characteristics. Chem. Eng. Trans. 2022, 94, 1321–1326. [Google Scholar] [CrossRef]
- Ali, M.; Al-Assaf, A.H.; Salah, M. Date Palm Fiber-Reinforced Recycled Polymer Composites: Synthesis and Characterization. Adv. Polym. Technol. 2022, 2022, 7957456. [Google Scholar] [CrossRef]
- Türker, S.; Öztürk, F.; Öz, Y. Review of recycling methods of thermoplastic composite materials. Polym. -Plast. Technol. Mater. 2024, 63, 1693–1713. [Google Scholar] [CrossRef]
- Akash, M.P.; Vasudevan, A. Experimental analysis of recycled thermoplastic material. Mater. Today Proc. 2021, 45, 6198–6203. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Luca, H.A.D.; Campbell, W.B.; Maass, O. Measurement of the Dielectric Constant of Cellulose. Can. J. Res. 1938, 16, 273–288. [Google Scholar] [CrossRef]
- Shinouda, H.G.; Hanna, A.A. Dielectric and Infrared Study of Some Cellulose Derivatives. J. Appl. Polym. Sci. 1977, 21, 1479–1488. [Google Scholar] [CrossRef]
- García-Morales, M.; Fernández-Silva, S.D.; Roman, C.; Olariu, M.A.; Cidade, M.T.; Delgado, M.A. Preliminary Insights into Electro-Sensitive Ecolubricants: A Comparative Analysis Based on Nanocelluloses and Nanosilicates in Castor Oil. Processes 2020, 8, 1060. [Google Scholar] [CrossRef]
- Abdel-karim, A.M.; Salama, A.H.; Hassan, M.L. Electrical Conductivity and Dielectric Properties of Nanofibrillated Cellulose Thin Films from Bagasse. J. Phys. Org. Chem. 2018, 31, e3851. [Google Scholar] [CrossRef]
- Zyane, A.; Belfkira, A.; Brouillette, F.; Romain, L.; Marchet, P. Microcrystalline Cellulose as a Green Way for Substituting BaTiO3 in Dielectric Composites and Improving Their Dielectric Properties. Cellul. Chem. Technol. 2015, 49, 783–787. [Google Scholar]
- Aflori, M.; Miron, C.; Dobromir, M.; Drobota, M. Bactericidal Effect on Foley Catheters Obtained by Plasma and Silver Nitrate Treatments. High Perform. Polym. 2015, 27, 655–660. [Google Scholar] [CrossRef]
- Chiriac, A.I.; Pastor, F.I.J.; Popa, V.I.; Aflori, M.; Ciolacu, D. Changes of Supramolecular Cellulose Structure and Accessibility Induced by the Processive Endoglucanase Cel9B from Paenibacillus Barcinonensis. Cellulose 2014, 21, 203–219. [Google Scholar] [CrossRef]
- George, G.; Joseph, K.; Nagarajan, E.R.; Tomlal Jose, E.; George, K.C. Dielectric Behaviour of PP/Jute Yarn Commingled Composites: Effect of Fibre Content, Chemical Treatments, Temperature and Moisture. Compos. Part A Appl. Sci. Manuf. 2013, 47, 12–21. [Google Scholar] [CrossRef]
- Anju, V.P.; Narayanankutty, S.K. Polyaniline Coated Cellulose Fiber/Polyvinyl Alcohol Composites with High Dielectric Permittivity and Low Percolation Threshold. AIP Adv. 2016, 6, 015109. [Google Scholar] [CrossRef]
- Notingher, P.V.; Stancu, C.; Enescu, I.; Enescu, A. Dielectric Properties of Wood-Polymer Composites. Mat. Plast. 2010, 47, 393–398. [Google Scholar]
- Brostow, W.; Zhang, D. Tensile Elongation at Break for Polymers Related to Vickers Hardness. Mater. Lett. 2020, 276, 128179. [Google Scholar] [CrossRef]
- Ju, S.; Chen, M.; Zhang, H.; Zhang, Z. Dielectric Properties of Nanosilica/Low-Density Polyethylene Composites: The Surface Chemistry of Nanoparticles and Deep Traps Induced by Nanoparticles. Express Polym. Lett. 2014, 8, 682–691. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Marinescu, V.; Mitrea, S.; Aradoaei, M.; Ursan, G.A. Dielectric and Morphostructural Characterization of Some Types of Polypropylene Composites/Metallic Nanopowders. EEA-Electroteh. Electron. Autom. 2019, 67, 61–67. [Google Scholar]
- Caramitu, A.R.; Setnescu, R.; Lunculescu, M.E.; Mitrea, S.; Pintea, J. Dielectric Behaviour of Some Composite Materials of HDPE/CB Type. EEA-Electroteh. Electron. Autom. 2018, 66, 73–79. [Google Scholar]
- Caramitu, A.R.; Avadanei, L.; Mitrea, S.; Sbarcxea, G.; Budrugeac, P. New Composites Based on Polypropylene Reinforced with Biodegradable Fibres for Automotive Applications. Mater. Plast. 2012, 49, 255–258. [Google Scholar]
- Ciobanu, R.C.; Schreiner, C.; Caramitu, A.R.; Aradoaei, S.; Aradoaei, M. Sustainability of the Technology for Obtaining Thermoplastic Building Materials from Non-Recyclable Mixed Plastic–Paper Packaging Waste. Sustainability 2024, 16, 3430. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Anjana, P.S.; Deepu, V.; Uma, S.; Mohanan, P.; Philip, J.; Sebastian, M.T. Dielectric, Thermal, and Mechanical Properties of CeO2-filled HDPE Composites for Microwave Substrate Applications. J. Polym. Sci. B Polym. Phys. 2010, 48, 998–1008. [Google Scholar] [CrossRef]
- Qiao, Y.; Yin, X.; Zhu, T.; Li, H.; Tang, C. Dielectric Polymers with Novel Chemistry, Compositions and Architectures. Prog. Polym. Sci. 2018, 80, 153–162. [Google Scholar] [CrossRef]
- Migneault, S.; Koubaa, A.; Perré, P.; Riedl, B. Effects of Wood Fiber Surface Chemistry on Strength of Wood–Plastic Composites. Appl. Surf. Sci. 2015, 343, 11–18. [Google Scholar] [CrossRef]
- Mulinari, D.R.; Voorwald, H.J.; Cioffi, M.O.; Da Silva, M.L. Cellulose Fiber-Reinforced High-Density Polyethylene Composites—Mechanical and Thermal Properties. J. Compos. Mater. 2017, 51, 1807–1815. [Google Scholar] [CrossRef]
- Virtanen, S.; Wikström, L.; Immonen, K.; Anttila, U.; Retulainen, E. Cellulose Kraft Pulp Reinforced Polylactic Acid (PLA) Composites: Effect of Fibre Moisture Content. AIMS Mater. Sci. 2016, 3, 756–769. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Ion, I.; Mitrea, A.; Sbarcea, G.; Budrugeac, P.; Burunția, N.; Groza, C.; Lazar, V.; Bucur, M.; Nicolae, V.; et al. Compozite Biodegradabile Cu Aplicatii in Realizarea Amenajarilor Interioare Ale Automobilelor; Editura Printech: Bucharest, Romania, 2009; ISSN 9786065213906. [Google Scholar]
- Iwona, M.P.; Szczepanek, M. Analysis of Particles’ Size and Degree of Distribution of a Wooden Filler in Wood–Polymer Composites. Materials 2021, 14, 6251. [Google Scholar] [CrossRef] [PubMed]
- Kizuku, K.; Moriyama, M.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J.; Ishihara, S.; Kano, J. Measurement method for dispersion states of filler particles in particulate composite materials by macroscopic permittivity. Adv. Powder Technol. 2021, 32, 272–282. [Google Scholar] [CrossRef]
- Elloumi, I.; Koubaa, A.; Kharrat, W.; Bradai, C.; Elloumi, A. Dielectric Properties of Wood-Polymer Composites: Effects of Frequency, Fiber Nature, Proportion, and Chemical Composition. J. Compos. Sci. 2021, 5, 141. [Google Scholar] [CrossRef]
- Caramitu, A.; Mitrea, S.; Marinescu, V.; Ursan, G.-A.; Aradoaie, M.; Lingvay, I. Dielectric Behavior and Morphostructural Characteristics of Some HDPE Composites/Metal Nanopowders. Mat. Plast. 2019, 56, 103–109. [Google Scholar] [CrossRef]
- Bors, A.-M.; Lingvay, D.; Caramitu, A.-R.; Iordache, I.; Lingvay, I. Comparative Studies on the Electrical and Mechanical Behavior of Some Soldering and/or Impregnation Lacquers. Mat. Plast. 2019, 56, 129–132. [Google Scholar] [CrossRef]
- Drobota, M.; Ursache, S.; Aflori, M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers 2022, 14, 2307. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, A.D.; Grammatikos, S.A.; Ursan, G.A.; Aradoaei, S.; Summerscales, J.; Ciobanu, R.C.; Schreiner, C. Recovery of Electronic Wastes as Fillers for Electromagnetic Shielding in Building Components: An LCA Study. J. Clean. Prod. 2021, 280, 124593. [Google Scholar] [CrossRef]
- Caramitu, A.R.; Lungu, M.V.; Ciobanu, R.C.; Ion, I.; Marin, M.; Marinescu, V.; Pintea, J.; Sebastian Aradoaei, S.; Schreiner, O.D. Recycled polypropylene/strontium ferrite polymer composite materials with electromagnetic shielding properties. Polymers 2024, 16, 1129. [Google Scholar] [CrossRef]
- Available online: https://www.sigmaaldrich.com/RO/en/product/sigma/21902 (accessed on 22 May 2024).
- ISO 62/2008; Plastics—Determination of Water Absorption. ISO: Geneva, Switzerland, 2008.
- Idolor, O.; Guha, R.D.; Berkowitz, K.; Geiger, C.; Davenport, M.; Grace, L. Polymer-Water Interactions and Damage Detection in Polymer Matrix Composites. Compos. Part B Eng. 2021, 211, 108637. [Google Scholar] [CrossRef]
- Gilli, E.; Horvath, A.E.; Horvath, A.T.; Hirn, U.; Schennach, R. Analysis of CMC attachment onto cellulosic fibers by infrared spectroscopy. Cellulose 2009, 16, 825–832. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Ramli, N.A.; Othman, N.A.; Mohd Amin, K.N.; Adam, F. Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film. Mater. Today Proc. 2021, 42, 56–62. [Google Scholar] [CrossRef]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. Am. J. Anal. Chem. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- Atykyan, N.; Revin, V.; Shutova, V. Raman and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Lungulescu, E.M.; Lingvay, I.; Bors, A.M.; Fortuna, L.; Nicula, N.O. Assessment of Paint Layers Quality by FTIR and DSC Techniques. Mater. Plast. 2019, 56, 87–91. [Google Scholar] [CrossRef]
- Smith, B. The Infrared Spectra of Polymers III: Hydrocarbon Polymers. Spectroscopy 2021, 36, 22–25. [Google Scholar] [CrossRef]
Heating zones of the extruder screw | 6 | 5 | 4 | 3 | 2 | 1 |
Temperature (°C) | 240 | 230 | 220 | 210 | 200 | 190 |
Heating zones of the injection machine screw | 5 | 4 | 3 | 2 | 1 | |
Temperature (°C) | 230 | 215 | 200 | 185 | 170 |
Composite Concentration (wt.%) PPr/CMC | Coding |
---|---|
0/100 | CMC |
100/0 | PPr + 0% CMC |
95/5 | PPr + 5% CMC |
90/10 | PPr + 10% CMC |
Frequency (MHz) | Electrical Characteristics | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
---|---|---|---|---|---|---|---|
Materials | |||||||
PPr | tg δ | 8.34 × 10−3 | 7.15 × 10−3 | 6.36 × 10−3 | 5.96 × 10−3 | 5.14 × 10−3 | |
PPr | σ | 1.40 × 10−8 | 2.40 × 10−8 | 3.20 × 10−8 | 4.00 × 10−8 | 4.22 × 10−8 | |
PPr + 5% CMC | tg δ | 1.02 × 10−2 | 8.79 × 10−3 | 8.31 × 10−3 | 7.88 × 10−3 | 6.85 × 10−3 | |
PPr + 5% CMC | σ | 1.76 × 10−8 | 3.02 × 10−8 | 4.28 × 10−8 | 5.41 × 10−8 | 5.76 × 10−8 | |
PPr + 10% CMC | tg δ | 1.33 × 10−2 | 1.23 × 10−2 | 1.15 × 10−2 | 1.11 × 10−2 | 1.04 × 10−2 | |
PPr + 10% CMC | σ | 2.31 × 10−8 | 4.27 × 10−8 | 5.94 × 10−8 | 7.64 × 10−8 | 8.83 × 10−8 |
Exposure Time (hours); % Variation | 240 | 480 | 720 | 960 | |||||
---|---|---|---|---|---|---|---|---|---|
Approx. % Increase | |||||||||
Dielectric Composites Characteristics | tg δ | σ | tg δ | σ | tg δ | σ | tg δ | σ | |
PPr | 5.87% | 3.51 | 9.33 | 863.08 | 17.6 | 7.74 | 23.41 | 20.04 | |
PPr + 5% CMC | 75.83 | 64.78 | 105.06 | 1666.52 | 115.60 | 99.56 | 148.76 | 137.39 | |
PPr + 10% CMC | 192.72 | 167.75 | 217.07 | 2564.23 | 370.78 | 4076.02 | 452.7 | 4814.49 |
Samples | c 24 h | c 48 h | c 72 h | c 96 h | c 120 h | c 144 h | c 168 h | c 192 h | c 216 h |
---|---|---|---|---|---|---|---|---|---|
PPr 1 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.033 | 0.04 | 0.04 | 0.05 |
PPr 2 | 0.02 | 0.03 | 0.04 | 0.09 | 0.13 | 0.18 | 0.20 | 0.20 | 0.21 |
PPr 3 | 0.03 | 0.05 | 0.10 | 0.18 | 0.24 | 0.29 | 0.29 | 0.30 | 0.30 |
variation from the initial mass (%) | 34.76 | 63.31 | 79.14 | 84.90 | 87.90 | 88.44 | 88.67 | 89.16 | |
PPr + 5% CMC 1 | 0.04 | 0.07 | 0.07 | 0.08 | 0.10 | 0.14 | 0.25 | 0.26 | 0.26 |
PPr + 5% CMC 2 | 0.03 | 0.02 | 0.06 | 0.08 | 0.14 | 0.29 | 0.32 | 0.33 | 0.34 |
PPr + 5% CMC 3 | 0.04 | 0.05 | 0.08 | 0.13 | 0.17 | 0.19 | 0.25 | 0.27 | 0.28 |
variation from the initial mass (%) | 13.35 | 43.86 | 58.57 | 70.58 | 80.89 | 85.35 | 86.07 | 86.34 | |
PPr + 10% CMC 1 | 0.05 | 0.07 | 0.08 | 0.12 | 0.18 | 0.29 | 0.43 | 0.23 | 0.35 |
PPr + 10% CMC 2 | 0.05 | 0.06 | 0.07 | 0.09 | 0.15 | 0.21 | 0.22 | 0.33 | 0.37 |
PPr + 10% CMC 3 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.17 | 0.25 | 0.42 | 0.44 |
variation from the initial mass (%) | 26.09 | 41.42 | 55.27 | 68.50 | 78.74 | 84.40 | 85.62 | 87.82 |
Exposure Time (hours); % Variation | 120 | 240 | 360 | 480 | |||||
---|---|---|---|---|---|---|---|---|---|
Approx. % Increase | |||||||||
Dielectric Composites Characteristics | tg δ | σ | tg δ | σ | tg δ | σ | tg δ | σ | |
PPr | 19.29 | 20.13 | 23.24 | 4.23 | 33.2 | 1.62 | 77.62 | 77.62 | |
PPr + 5% CMC | 33.85 | 35.64 | 34.19 | 32.39 | 40.74 | 40.74 | 88.91 | 79.72 | |
PPr + 10% CMC | 35.64 | 33.85 | 55.52 | 49.35 | 66.35 | 59.63 | 107.30 | 96.61 |
Exposure Time (hours); % Variation | 72 | 144 | 216 | 288 | |||||
---|---|---|---|---|---|---|---|---|---|
Approx. % Increase (i) % Decrease (d) | |||||||||
Dielectric Characteristics Composites | tg δ | σ | tg δ | σ | tg δ | σ | tg δ | σ | |
PPr | 13.4 (i) | 881.56 (i) | 38.83 (d) | 26.27 (d) | 16 (d) | 1251.35 (d) | 16 (d) | 1251.35 (d) | |
PPr + 5% CMC | 43.32 (i) | 1251.07 (i) | 35.36 (d) | 38.42 (i) | 40.5 (d) | 37.92 (d) | 40.5 (d) | 37.92 (d) | |
PPr + 10% CMC | 71.44 (i) | 1493.02 (i) | 86.14 (i) | 1657.07 (i) | 37.92 (i) | 2076.69 (i) | 135.94 (i) | 2076.69 (d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caramitu, A.R.; Ciobanu, R.C.; Ion, I.; Marin, M.; Lungulescu, E.-M.; Marinescu, V.; Aflori, M.; Bors, A.M. Composites from Recycled Polypropylene and Carboxymethylcellulose with Potential Uses in the Interior Design of Vehicles. Polymers 2024, 16, 2188. https://doi.org/10.3390/polym16152188
Caramitu AR, Ciobanu RC, Ion I, Marin M, Lungulescu E-M, Marinescu V, Aflori M, Bors AM. Composites from Recycled Polypropylene and Carboxymethylcellulose with Potential Uses in the Interior Design of Vehicles. Polymers. 2024; 16(15):2188. https://doi.org/10.3390/polym16152188
Chicago/Turabian StyleCaramitu, Alina Ruxandra, Romeo Cristian Ciobanu, Ioana Ion, Mihai Marin, Eduard-Marius Lungulescu, Virgil Marinescu, Magdalena Aflori, and Adriana Mariana Bors. 2024. "Composites from Recycled Polypropylene and Carboxymethylcellulose with Potential Uses in the Interior Design of Vehicles" Polymers 16, no. 15: 2188. https://doi.org/10.3390/polym16152188
APA StyleCaramitu, A. R., Ciobanu, R. C., Ion, I., Marin, M., Lungulescu, E. -M., Marinescu, V., Aflori, M., & Bors, A. M. (2024). Composites from Recycled Polypropylene and Carboxymethylcellulose with Potential Uses in the Interior Design of Vehicles. Polymers, 16(15), 2188. https://doi.org/10.3390/polym16152188