Corrosion Characteristics of Polymer-Modified Oil Well Cement-Based Composite Materials in Geological Environment Containing Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation and Testing of Cement Samples
2.2.2. Test of Corrosion Depth
2.2.3. Single-Factor Corrosion Experiment Design
2.2.4. Box Behnken Experimental Design
3. Result and Discussion
3.1. Basic Properties of Polymer-Modified Cement Slurry
3.2. Analysis of Corrosion Factors in Polymer-Modified Cement Slurry
3.2.1. Effect of Corrosion Time on Corrosion Depth of Polymer-Modified Oil Well Cement
3.2.2. Effect of Pressure of CO2 on Corrosion Depth of Polymer-Modified Oil Well Cement
3.2.3. Effect of Corrosion Temperature on Corrosion Depth of Polymer-Modified Oil Well Cement
3.3. Corrosion Analysis of Polymer-Modified Cement Slurry under Multiple Factors
3.3.1. Establishment of Response Surface Model
3.3.2. Analysis of Response Model
3.4. Interaction Effect Analysis of Various Factor
3.4.1. Interaction Effect of the Corrosion Time and the Pressure of CO2
3.4.2. Interaction Effect of Corrosion Time and Corrosion Temperature
3.4.3. Interaction Effect of the Pressure of CO2 and Corrosion Temperature
3.5. Analysis of Anti-Corrosion Effect of Polymers on Cement
3.5.1. Corrosion of Oil Well Cement
3.5.2. Mechanism of Polymer-Reinforced Anti-Corrosion Property of Oil Well Cement
4. Conclusions
- (1)
- Polymer-modified oil well cement has good basic performance, which meets the requirements of cementing operations. Meanwhile, its ability to resist corrosion is significantly better than that of blank cement slurry.
- (2)
- Polymer-modified oil well cement is significantly affected by corrosion time, the pressure of CO2, and corrosion temperature. According to the fitting data results, the corrosion depth is logarithmic with the corrosion temperature, square root with the pressure of CO2, and linear with the corrosion time.
- (3)
- Under experimental conditions, it can be seen that polymer-modified oil well cement is most affected by the interaction between the pressure of CO2 and corrosion time under the influence of various corrosion factors in complex formations. The long-term corrosion resistance of oil well cement can be enhanced by improving the structural density of cement stone and blocking the invasion of acidic corrosive media by adding polymer preservatives.
- (4)
- The corrosion changes in polymer-modified oil well cement under the interaction of multiple complex factors can be well explained using the response surface model of corrosion depth based on multiple corrosion factors, and the impact of the interaction between factors on the corrosion of oil well cement can be facilitated and understood, providing guidance for the long-term anti-corrosion design of oil well cement.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, H.; Salehi, S. Structural integrity of liner cement in oil & gas wells: Parametric study, sensitivity analysis, and risk assessment. Eng. Fail. Anal. 2021, 122, 105203. [Google Scholar] [CrossRef]
- Arjomand, E.; Bennett, T.; Nguyen, G.D. Evaluation of cement sheath integrity subject to enhanced pressure! J. Pet. Sci. Eng. 2018, 170, 1–13. [Google Scholar] [CrossRef]
- Kiran, R.; Teodoriu, C.; Dadmohammadi, Y.; Nygaard, R.; Wood, D.; Mokhtari, M.; Salehi, S. Identification and evaluation of well integrity and causes of failure of well integrity barriers (A review). J. Nat. Gas Sci. Eng. 2017, 45, 511–526. [Google Scholar] [CrossRef]
- Kuo, C.C.; Wang, C.L.; Hsiang, H.I. Mechanical and microscopic properties of API G cement after exposure to supercritical CO2. Terr. Atmos. Ocean. Sci. 2017, 28, 209–216. [Google Scholar] [CrossRef]
- Marbun, B.T.H.; Prasetyok, D.E.; Prabowo, H.; Susilo, D.; Firmansyah, F.R.; Palilu, J.M.; Silamba, I.C.; Santoso, D.; Kadir, W.G.A.; Sule, R.; et al. Well integrity evaluation prior to converting a conventional gas well to CO2 injector well—Gundih CCS pilot project in Indonesia (phase 1). Int. J. Greenh. Gas Control. 2019, 88, 447–459. [Google Scholar] [CrossRef]
- Liaudat, J.; Martinez, A.; Lopez, C.M.; Carol, I. Modelling acid attack of oilwell cement exposed to carbonated brine. Int. J. Greenh. Gas Control. 2018, 68, 191–202. [Google Scholar] [CrossRef]
- Elbakhshwan, M.S.; Gill, S.K.; Rod, K.A.; Bingham, E.B.; McKinney, A.L.; Huerta, N.; Lopano, C.L.; Kutchko, B.G.; Chen-Wiegart, Y.-C.K.; Zhao, C.; et al. Structural and chemical changes from CO2 exposure to self-healing polymer cement composites for geothermal wellbores. Geothermics 2021, 89, 101932. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Peng, Z. Corrosion integrity of oil cement modified by environment responsive microspheres for CO2 geologic sequestration wells. Cem. Concr. Res. 2021, 143, 106397. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, J.; Peng, Z.; Feng, Q.; Lou, Y. Study on the properties of urea-formaldehyde resin in repairing microcracks of cement stone in oil well under CO2 acid environment. React. Funct. Polym. 2023, 191, 105688. [Google Scholar] [CrossRef]
- Liu, J.; Yao, S.; Ba, M.; He, Z.; Li, Y. Effects of Carbonation on Micro Structures of Hardened Cement Paste. J. Wuhan Univ. Technol. -Mater. Sci. Ed. 2016, 31, 146–150. [Google Scholar] [CrossRef]
- Costa, B.L.S.; Freitas, J.C.O.; Araujo, R.G.S.; Oliveira, Y.H.; Santiago, R.C.; Oliveira, F.S. Analysis of different oil well cement slurry formulations exposed to a CO2-rich environment. J. CO2 Util. 2021, 51, 101636. [Google Scholar] [CrossRef]
- Chen, T.; Gao, X.; Qin, L. Mathematical modeling of accelerated carbonation curing of Portland cement paste at early age. Cem. Concr. Res. 2019, 120, 187–197. [Google Scholar] [CrossRef]
- Reddy, K.C.; Melaku, N.S.; Park, S. Thermodynamic Modeling Study of Carbonation of Portland Cement. Materials 2022, 15, 5060. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Hu, X.; He, P.; Liu, J.; Shi, C. A review on the modelling of carbonation of hardened and fresh cement-based materials. Cem. Concr. Compos. 2022, 125, 104315. [Google Scholar] [CrossRef]
- Bao, H.; Xu, G.; Wang, Q.; Peng, Y.Z.; Liu, J.Y. Study on the deterioration mechanism of cement-based materials in acid water containing aggressive carbon dioxide. Constr. Build. Mater. 2020, 243, 118233. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Song, J.; Wang, C.; Wang, X.; Hamad, B.A. Study on the corrosion change law and prediction model of cement stone in oil wells with CO2 corrosion in ultra-high-temperature acid gas wells. Constr. Build. Mater. 2022, 323, 125879. [Google Scholar] [CrossRef]
- Makki, M.M.; Ahmed, B.; Chokri, B. Reliability prediction of the stress concentration factor using response surface method. Int. J. Adv. Manuf. Technol. 2018, 94, 817–826. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Li, L.F.; Ling, T.C. Response surface methodology for the optimization of CO2 uptake using waste concrete powder. Constr. Build. Mater. 2022, 340, 127758. [Google Scholar] [CrossRef]
- Prabhakaran, S.P.S.; Swaminathan, G. Thermogravimetric study of textile lime sludge and cement raw meal for co-processing as alternative raw material for cement production using response surface methodology and neural networks. Environ. Technol. Innov. 2022, 25, 102100. [Google Scholar] [CrossRef]
- Nayak, S.K.; Satapathy, A.; Mantry, S. Parametric Analysis for Erosion Wear of Waste Marble Dust-Filled Polyester Using Response Surface Method and Neural Networks. J. Mater. Eng. Perform. 2021, 30, 3942–3954. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Gong, S.G.; Xie, G.L.; Zhang, J.P. Sensitivity analysis of process parameters for granular mixing in an intensive mixer using response surface methodology. Powder Technol. 2021, 384, 51–61. [Google Scholar] [CrossRef]
- Irfan, M.F.; Hossain, S.M.Z.; Tariq, I.; Khan, N.A.; Tawfeeqi, A.; Goeva, A.; Wael, M. Modeling and Optimization of Aqueous Mineral Carbonation for Cement Kiln Dust Using Response Surface Methodology Integrated with Box-Behnken and Central Composite Design Approaches. Min. Metall. Explor. 2020, 37, 1367–1383. [Google Scholar] [CrossRef]
- Steiner, S.; Lothenbach, B.; Proske, T.; Borgschulte, A.; Winnefeld, F. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cem. Concr. Res. 2020, 135, 106116. [Google Scholar] [CrossRef]
- Wu, G.; Wu, Z.; Xing, X.; Cai, J.; Cheng, X. Effect of CO2 on the Hydration of Aluminate Cement Under Conditions of Burning Reservoir in Heavy Oil Thermal Recovery. Front. Mater. 2022, 9, 833851. [Google Scholar] [CrossRef]
- Peng, Z.; Lv, F.; Feng, Q.; Zheng, Y. Enhancing the CO2-H2S corrosion resistance of oil well cement with a modified epoxy resin. Constr. Build. Mater. 2022, 326, 126854. [Google Scholar] [CrossRef]
- Xu, B.; Yuan, B.; Wang, Y.; Zhu, L. H2S-CO2 mixture corrosion-resistant Fe2O3-amended wellbore cement for sour gas storage and production wells. Constr. Build. Mater. 2018, 188, 161–169. [Google Scholar] [CrossRef]
- Kazemian, A.; Basati, Y.; Khatibi, M.; Ma, T. Performance prediction and optimization of a photovoltaic thermal system integrated with phase change material using response surface method. J. Clean. Prod. 2021, 290, 125748. [Google Scholar] [CrossRef]
- Li, Z.; Lu, D.; Gao, X. Multi-objective optimization of gap-graded cement paste blended with supplementary cementitious materials using response surface methodology. Constr. Build. Mater. 2020, 248, 118552. [Google Scholar] [CrossRef]
- Dong, Y.C.; Georgakis, C.; Mustakis, J.; Hawkins, J.M.; Han, L.; Wang, K.; McMullen, J.P.; Grosser, S.T.; Stone, K. Stoichiometry identification of pharmaceutical reactions using the constrained dynamic response surface methodology. Aiche J. 2019, 65, 16726. [Google Scholar] [CrossRef]
- Miao, C.Q.; Zhuang, M.L.; Dong, B. Stress Corrosion of Bridge Cable Wire by the Response Surface Method. Strength Mater. 2019, 51, 646–652. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, D.; Zeng, D.; Yang, Y.; Shi, T.; Deng, K.; Ren, C.; Zhang, D.; Wang, F. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions. Corros. Sci. 2013, 74, 13–21. [Google Scholar] [CrossRef]
- de Sena Costa, B.L.; de Oliveira Freitas, J.C.; Silva Santos, P.H.; de Araujo Melo, D.M.; de Oliveira, Y.H. Effects of carbon dioxide in Portland cement: A relation between static sedimentation and carbonation. Constr. Build. Mater. 2017, 150, 450–458. [Google Scholar] [CrossRef]
- Song, J.; Chen, R.; Wu, Z.; Yin, Z.; Xu, M. A review of research methods for oil well cement corroded by carbon dioxide. Geoenergy Sci. Eng. 2024, 232, 212469. [Google Scholar] [CrossRef]
- Wu, Z.; Song, J.; Xu, M.; Liu, W.; Chen, R.; Pu, L.; Zhou, S. Effect of weighting materials on carbonation of oil well cement-based composites under high temperature and CO2-rich environment. Arab. J. Chem. 2023, 16, 104670. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.; Guo, Z.; Ma, Y.; Wang, Y.; Gu, T.; Yang, T.; Jiao, L.; Liu, K.; Hu, Z. Effect of CO2 solution on Portland cement paste under flowing, migration, and static conditions. J. Nat. Gas Sci. Eng. 2021, 95, 104179. [Google Scholar] [CrossRef]
Component | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Other |
---|---|---|---|---|---|---|---|
Content (wt%) | 64.11 | 22.40 | 3.62 | 4.42 | 1.24 | 2.23 | 1.98 |
Samples | Content (wt%) | ||||||
---|---|---|---|---|---|---|---|
Cement | Water | Enhancer | Dispersant | Filtrate Reducer | Retarder | Polymer Preservative | |
Polymer-modified cement slurry | 100 | 40 | 6 | 0.6 | 4 | 0.5 | 12 |
Pure cement slurry | 100 | 40 | 6 | 0.6 | 4 | 0.5 | 0 |
Real Variables | Code | Code Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Time (d) | A | 30 | 40 | 50 |
Pressure of CO2 (MPa) | B | 15 | 20 | 25 |
Temperature (°C) | C | 60 | 70 | 80 |
Performance | Test Results |
---|---|
Flowability index | 0.86 |
Consistency coefficient (Pa·Sn) | 0.27 |
Compressive strength (MPa) | 24.3 |
Water loss (mL) | 38 |
Thickening time (min) | 217 |
No. | Code Value | Corrosion Depth (mm) | Error | ||||
---|---|---|---|---|---|---|---|
A | B | C | Actual Value | Predicted Value | Absolute Error (mm) | Relative Error (%) | |
1 | 40 | 20 | 70 | 1.75 | 1.763 | 0.013 | 0.74 |
2 | 40 | 15 | 60 | 1.71 | 1.704 | −0.006 | −0.35 |
3 | 40 | 25 | 60 | 1.76 | 1.766 | 0.006 | 0.34 |
4 | 30 | 20 | 60 | 1.63 | 1.629 | −0.001 | −0.06 |
5 | 40 | 20 | 70 | 1.78 | 1.763 | −0.017 | −0.96 |
6 | 30 | 25 | 70 | 1.68 | 1.675 | −0.005 | −0.30 |
7 | 30 | 20 | 80 | 1.7 | 1.699 | −0.001 | −0.06 |
8 | 50 | 15 | 70 | 1.81 | 1.815 | 0.005 | 0.28 |
9 | 50 | 20 | 60 | 1.82 | 1.821 | 0.001 | 0.05 |
10 | 50 | 25 | 70 | 1.89 | 1.883 | −0.007 | −0.37 |
11 | 40 | 20 | 70 | 1.76 | 1.763 | 0.003 | 0.17 |
12 | 30 | 15 | 70 | 1.64 | 1.648 | 0.008 | 0.49 |
13 | 40 | 25 | 80 | 1.81 | 1.816 | 0.006 | 0.33 |
14 | 50 | 20 | 80 | 1.88 | 1.881 | 0.001 | 0.05 |
15 | 40 | 15 | 80 | 1.79 | 1.784 | −0.006 | −0.34 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.0843 | 9 | 0.0094 | 59.16 | 0.0002 | Significant |
A | 0.0703 | 1 | 0.0703 | 444.08 | <0.0001 | |
B | 0.0045 | 1 | 0.0045 | 28.50 | 0.0031 | |
C | 0.0084 | 1 | 0.0084 | 53.37 | 0.0008 | |
AB | 0.0004 | 1 | 0.0004 | 2.53 | 0.1728 | |
AC | 0.0000 | 1 | 0.0000 | 0.1579 | 0.7075 | |
BC | 0.0002 | 1 | 0.0002 | 1.42 | 0.2867 | |
A² | 0.0003 | 1 | 0.0003 | 1.96 | 0.2205 | |
B² | 0.0000 | 1 | 0.0000 | 0.0162 | 0.9037 | |
C² | 0.0000 | 1 | 0.0000 | 0.2591 | 0.6324 | |
Residual | 0.0008 | 5 | 0.0002 | |||
Lack of Fit | 0.0003 | 3 | 0.0001 | 0.4643 | 0.7370 | Not significant |
Pure Error | 0.0005 | 2 | 0.0002 | |||
Cor Total | 0.0851 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xie, J.; Zhao, W.; Dai, J.; Gao, F. Corrosion Characteristics of Polymer-Modified Oil Well Cement-Based Composite Materials in Geological Environment Containing Carbon Dioxide. Polymers 2024, 16, 2187. https://doi.org/10.3390/polym16152187
Zhang Y, Xie J, Zhao W, Dai J, Gao F. Corrosion Characteristics of Polymer-Modified Oil Well Cement-Based Composite Materials in Geological Environment Containing Carbon Dioxide. Polymers. 2024; 16(15):2187. https://doi.org/10.3390/polym16152187
Chicago/Turabian StyleZhang, Yan, Junyu Xie, Weiming Zhao, Jie Dai, and Fei Gao. 2024. "Corrosion Characteristics of Polymer-Modified Oil Well Cement-Based Composite Materials in Geological Environment Containing Carbon Dioxide" Polymers 16, no. 15: 2187. https://doi.org/10.3390/polym16152187
APA StyleZhang, Y., Xie, J., Zhao, W., Dai, J., & Gao, F. (2024). Corrosion Characteristics of Polymer-Modified Oil Well Cement-Based Composite Materials in Geological Environment Containing Carbon Dioxide. Polymers, 16(15), 2187. https://doi.org/10.3390/polym16152187