Metakaolin-Based Geopolymers Filled with Industrial Wastes: Improvement of Physicochemical Properties through Sustainable Waste Recycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Geopolymer Synthesis
2.3. Sample Characterization
3. Results and Discussion
4. Conclusions
- All the synthesized samples showed a well-hardened structure as none of them underwent degradation during the integrity tests.
- The analysis of IC and pH values coming from integrity test leachates revealed that all the geopolymers released OH− ions contributing to water alkalinization, while 80GP20SW2, 80GP20SW3, and 80GP20SW5 had the higher IC values that could negatively affect the macroscopic structure.
- TGA data revealed that all geopolymers had a mass loss of about 13% up to 500 °C that is mainly related to the loss of dehydration water from the surface and geopolymer pores. Only the 80GP20SW2 sample showed a 23% mass loss up to 1000 °C, suggesting a partial thermal degradation of the waste entrapped in the geopolymer matrix. This means that the use of some additives could be useful to extend the long-term durability of this sample [90].
- The macroscopic structure of 80GP20SW5 suggests its possible usage as a lightweight concrete, while the promising mechanical behavior of the 80GP20SW1, 80GP20SW2, 80GP20SW3, and 80GP20SW4 samples suggest their possible use for building. Indeed, these samples showed a compressive strength even higher than that of the GP control. However, the data about heavy metal ions leaching revealed a limitation of the 80GP20SW1 sample’s use as the amount of Sb released was still high (25 ppm).
- Finally, the antimicrobial capacity of the synthesized samples also revealed their suitability to be used as cover material that needs to be active against bacterial strains which cause nosocomial infections.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanagaraj, B.; Anand, N.; Samuvel Raj, R.; Lubloy, E. Techno-Socio-Economic Aspects of Portland Cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) Composite Systems: A-State-of-Art-Review. Constr. Build. Mater. 2023, 398, 132484. [Google Scholar] [CrossRef]
- De Oliveira, L.B.; De Azevedo, A.R.G.; Marvila, M.T.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of Geopolymers with Industrial Waste. Case Stud. Constr. Mater. 2022, 16, e00839. [Google Scholar] [CrossRef]
- Srinivasu, D.B.; Rao, P.S. Infrastructure Development and Economic Growth: Prospects and Perspective. J. Bus. Manag. 2013, 2, 12. [Google Scholar]
- European Commission. Towards a Sustainable Europe by 2030; European Commission: Bruxelles, Belgium, 2019; pp. 17–18. [Google Scholar]
- Singh, N.B.; Middendorf, B. Geopolymers as an Alternative to Portland Cement: An Overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R. Geopolymers: Cement for low carbon economy. Indian Concr. J. 2014, 88, 29–37. [Google Scholar]
- Davidovits, J. Geopolymer: Chemistry & Applications, 5th ed.; Institut Géopolymère: Saint-Quentin, France, 2020; ISBN 978-2-9544531-1-8. [Google Scholar]
- Duxson, P. Geopolymer Precursor Design. In Geopolymers; Elsevier: Amsterdam, The Netherlands, 2009; pp. 37–49. ISBN 978-1-84569-449-4. [Google Scholar]
- Chen, L.; Wang, Z.; Wang, Y.; Feng, J. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer. Materials 2016, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Zhao, Y.; Lv, G.; Duan, Y.; Liu, X.; Jiang, X. Improving Stabilization/Solidification of MSWI Fly Ash with Coal Gangue Based Geopolymer via Increasing Active Calcium Content. Sci. Total Environ. 2023, 854, 158594. [Google Scholar] [CrossRef]
- Adhikary, S.K.; D’Angelo, A.; Viola, V.; Catauro, M.; Perumal, P. Alternative Construction Materials from Industrial Side Streams: Are They Safe? Energ. Ecol. Environ. 2023, 9, 206–214. [Google Scholar] [CrossRef]
- Blanco, I.; D’Angelo, A.; Viola, V.; Vertuccio, L.; Catauro, M. Metakaolin-Based Geopolymers Filled with Volcanic Fly Ashes: FT-IR, Thermal Characterization, and Antibacterial Property. Sci. Eng. Compos. Mater. 2023, 30, 20220192. [Google Scholar] [CrossRef]
- Tian, Q.; Bai, Y.; Pan, Y.; Chen, C.; Yao, S.; Sasaki, K.; Zhang, H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules 2022, 27, 4570. [Google Scholar] [CrossRef] [PubMed]
- Catauro, M.; Viola, V.; D’Amore, A. Mosses on Geopolymers: Preliminary Durability Study and Chemical Characterization of Metakaolin-Based Geopolymers Filled with Wood Ash. Polymers 2023, 15, 1639. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, B.A.; Lăzărescu, A.-V.; Hegyi, A. The Possibility of Using Slag for the Production of Geopolymer Materials and Its Influence on Mechanical Performances—A Review. In Proceedings of the 14th International Conference on Interdisciplinarity in Engineering—INTER-ENG 2020, Târgu Mureș, Romania, 17 December 2020; p. 30. [Google Scholar]
- Guo, L.; Zhou, M.; Wang, X.; Li, C.; Jia, H. Preparation of Coal Gangue-Slag-Fly Ash Geopolymer Grouting Materials. Constr. Build. Mater. 2022, 328, 126997. [Google Scholar] [CrossRef]
- Wang, K. Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 20–21 May 2004; Iowa State University, Ed.; Center for Transportation Research and Education, Iowa State University: Ames, IA, USA, 2004; ISBN 978-0-9652310-7-7. [Google Scholar]
- Podolsky, Z.; Liu, J.; Dinh, H.; Doh, J.H.; Guerrieri, M.; Fragomeni, S. State of the Art on the Application of Waste Materials in Geopolymer Concrete. Case Stud. Constr. Mater. 2021, 15, e00637. [Google Scholar] [CrossRef]
- Kozhukhova, N.I.; Glazkov, R.A.; Ageeva, M.S.; Kozhukhova, M.I.; Nikulin, I.S.; Zhernovskaya, I.V. Physical, Mechanical and Microstructural Characteristics of Perlite-Based Geopolymers Modified with Mineral Additives. J. Compos. Sci. 2024, 8, 211. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, C.; Sun, X.; Dong, W. Lunar Regolith Geopolymer Concrete for In-Situ Construction of Lunar Bases: A Review. Polymers 2024, 16, 1582. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.S.; Akbar, H.; Qazi, A.U.; Kazmi, S.M.S.; Munir, M.J. Bond Stress Behavior of a Steel Reinforcing Bar Embedded in Geopolymer Concrete Incorporating Natural and Recycled Aggregates. Infrastructures 2024, 9, 93. [Google Scholar] [CrossRef]
- Poltue, T.; Suddeepong, A.; Horpibulsuk, S.; Samingthong, W.; Arulrajah, A.; Rashid, A.S.A. Strength Development of Recycled Concrete Aggregate Stabilized with Fly Ash-Rice Husk Ash Based Geopolymer as Pavement Base Material. Road Mater. Pavement Des. 2020, 21, 2344–2355. [Google Scholar] [CrossRef]
- Zuaiter, M.; El-Hassan, H.; El-Maaddawy, T.; El-Ariss, B. Properties of Slag-Fly Ash Blended Geopolymer Concrete Reinforced with Hybrid Glass Fibers. Buildings 2022, 12, 1114. [Google Scholar] [CrossRef]
- Allaoui, D.; Majdoubi, H.; Haddaji, Y.; Nadi, M.; Mansouri, S.; Oumam, M.; Tamraoui, Y.; Alami, J.; Hannache, H.; Manoun, B. Valorization of Ceramic Sanitary Waste into Resilient Phosphoric Acid-Based Geopolymers for Sustainable Construction: Thermal, Mechanical, and Microstructural Properties. Ceram. Int. 2024, 50, 8875–8889. [Google Scholar] [CrossRef]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B.; Nisar, K.S.; Abdel-Aty, A.-H.; Yahia, I.S. Evaluation of the Effect of Granite Waste Powder by Varying the Molarity of Activator on the Mechanical Properties of Ground Granulated Blast-Furnace Slag-Based Geopolymer Concrete. Polymers 2022, 14, 306. [Google Scholar] [CrossRef]
- Nobouassia Bewa, C.; Tchakouté, H.K.; Fotio, D.; Rüscher, C.H.; Kamseu, E.; Leonelli, C. Water resistance and thermal behavior of metakaolin-phosphate-based geopolymer cements. J. Asian Ceram. Soc. 2018, 6, 271–283. [Google Scholar] [CrossRef]
- Lee, W.K.W.; van Deventer, J.S.J. Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates. Langmuir 2003, 19, 8726–8734. [Google Scholar] [CrossRef]
- D’Angelo, A.; Dal Poggetto, G.; Piccolella, S.; Leonelli, C.; Catauro, M. Characterisation of White Metakaolin-Based Geopolymers Doped with Synthetic Organic Dyes. Polymers 2022, 14, 3380. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.; Vertuccio, L.; Leonelli, C.; Alzeer, M.I.M.; Catauro, M. Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study. Polymers 2023, 15, 675. [Google Scholar] [CrossRef] [PubMed]
- Sá Ribeiro, R.A.; Sá Ribeiro, M.G.; Kutyla, G.P.; Kriven, W.M. Amazonian Metakaolin Reactivity for Geopolymer Synthesis. Adv. Mater. Sci. Eng. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Sgarlata, C.; Formia, A.; Siligardi, C.; Ferrari, F.; Leonelli, C. Mine Clay Washing Residues as a Source for Alkali-Activated Binders. Materials 2022, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- BS EN 12390-1-4:2021; Testing Hardened Concrete. British Standards Institution: London, UK, 2021; ISBN 978-0-539-05351-7.
- UNI EN 12457-2:2004; Characterisation of Waste—Leaching—Compliance Testing for Leaching of Granular Wastes and Sludges—Part 2: Single Stage Test at a Liquid/Solid Ratio of 10 L/kg for Materials with Particle Sizes Smaller than 4 mm (with or without Size Reduction). Ente Italiano di Normazione: Roma, Italy, 2004; p. 27.
- BS EN ISO 11885:2009; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Ente Nazionale di Unificazione: Roma, Italy; British Standards Institution: London, UK, 2009; p. 38ISBN 978-0-580-53595-6.
- Catauro, M.; D’Errico, Y.; D’Angelo, A.; Clarke, R.J.; Blanco, I. Antibacterial Activity and Iron Release of Organic-Inorganic Hybrid Biomaterials Synthesized via the Sol-Gel Route. Appl. Sci. 2021, 11, 9311. [Google Scholar] [CrossRef]
- Catauro, M.; D’Angelo, A.; Fiorentino, M.; Pacifico, S.; Latini, A.; Brutti, S.; Vecchio Ciprioti, S. Thermal, Spectroscopic Characterization and Evaluation of Antibacterial and Cytotoxicity Properties of Quercetin-PEG-Silica Hybrid Materials. Ceram. Int. 2023, 49, 14855–14863. [Google Scholar] [CrossRef]
- Righi, C.; Barbieri, F.; Sgarbi, E.; Maistrello, L.; Bertacchini, A.; Andreola, F.N.; D’Angelo, A.; Catauro, M.; Barbieri, L. Suitability of Porous Inorganic Materials from Industrial Residues and Bioproducts for Use in Horticulture: A Multidisciplinary Approach. Appl. Sci. 2022, 12, 5437. [Google Scholar] [CrossRef]
- Vertuccio, L.; Guadagno, L.; D’Angelo, A.; Viola, V.; Raimondo, M.; Catauro, M. Sol-Gel Synthesis of Caffeic Acid Entrapped in Silica/Polyethylene Glycol Based Organic-Inorganic Hybrids: Drug Delivery and Biological Properties. Appl. Sci. 2023, 13, 2164. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Mendis, P. How does aluminium foaming agent impact the geopolymer formation mechanism? Cem. Concr. Compos. 2017, 80, 277–286. [Google Scholar] [CrossRef]
- Leiva, C.; Luna-Galiano, Y.; Arenas, C.; Alonso-Fariñas, B.; Fernández-Pereira, C. A Porous Geopolymer Based on Aluminum-Waste with Acoustic Properties. Waste Manag. 2019, 95, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Wang, M. Structure, Reactivity, and Mechanical Properties of Sustainable Geopolymer Material: A Reactive Molecular Dynamics Study. Front. Mater. 2020, 7, 528060. [Google Scholar] [CrossRef]
- Biondi, L.; Perry, M.; McAlorum, J.; Vlachakis, C.; Hamilton, A. Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sens. Actuators B Chem. 2020, 309, 127775. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Sajan, D.; Devarajan, P.A. A Rapid and Versatile Method for Solvothermal Synthesis of Sb2O3 Nanocrystals under Mild Conditions. Appl. Nanosci. 2013, 3, 529–533. [Google Scholar] [CrossRef]
- López Morales, F.; Zayas, T.; Contreras, O.E.; Salgado, L. Effect of Sn Precursor on the Synthesis of SnO2 and Sb-Doped SnO2 Particles via Polymeric Precursor Method. Front. Mater. Sci. 2013, 7, 387–395. [Google Scholar] [CrossRef]
- Cowen, S.; Duggal, M.; Hoang, T.; Al-Abadleh, H.A. Vibrational Spectroscopic Characterization of Some Environmentally Important Organoarsenicals—A Guide for Understanding the Nature of Their Surface Complexes. Can. J. Chem. 2008, 86, 942–950. [Google Scholar] [CrossRef]
- Singh, S.; Aswath, M.U.; Das Biswas, R.; Ranganath, R.V.; Choudhary, H.K.; Kumar, R.; Sahoo, B. Role of Iron in the Enhanced Reactivity of Pulverized Red Mud: Analysis by Mössbauer Spectroscopy and FTIR Spectroscopy. Case Stud. Constr. Mater. 2019, 11, e00266. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and R Aman Spectra of Inorganic and Coordination Compounds. In Handbook of Vibrational Spectroscopy; Chalmers, J.M., Griffiths, P.R., Eds.; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-0-471-98847-2. [Google Scholar]
- Mihaylov, M.Y.; Zdravkova, V.R.; Ivanova, E.Z.; Aleksandrov, H.A.; Petkov, P.; Vayssilov, G.N.; Hadjiivanov, K.I. Infrared Spectra of Surface Nitrates: Revision of the Current Opinions Based on the Case Study of Ceria. J. Catal. 2021, 394, 245–258. [Google Scholar] [CrossRef]
- Guadagno, L.; Sorrentino, A.; Longo, R.; Raimondo, M. Multifunctional Properties of Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Epoxy Nanocomposites. Polymers 2023, 15, 2297. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.A.B.; Hussin, K.; Bnhussain, M.; Ismail, K.N.; Yahya, Z.; Abdul Razak, R. Fly Ash-Based Geopolymer Lightweight Concrete Using Foaming Agent. Int. J. Mol. Sci. 2012, 13, 7186–7198. [Google Scholar] [CrossRef] [PubMed]
- Sut-Lohmann, M.; Raab, T. Quick Detection and Quantification of Iron-Cyanide Complexes Using Fourier Transform Infrared Spectroscopy. Environ. Pollut. 2017, 227, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Koczón, P.; Lewandowski, W.; Mazurek, A.P. Vibrational (FT-IR and FT-Raman) and NMR Studies on Selected Metal (Ca, Mn, Zn) Complexes with Ortho-, Meta-, and Para-Iodobenzoic Acids. Vib. Spectrosc. 1999, 20, 143–149. [Google Scholar] [CrossRef]
- Elango, M.; Deepa, M.; Subramanian, R.; Mohamed Musthafa, A. Synthesis, Characterization, and Antibacterial Activity of Polyindole/Ag–Cuo Nanocomposites by Reflux Condensation Method. Polym. -Plast. Technol. Eng. 2018, 57, 1440–1451. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, H.; Gong, X.; Xu, R.; Xiao, Y.; Dong, H.; Liu, X.; Liu, Y. A Simple Additive-Free Approach for the Synthesis of Uniform Manganese Monoxide Nanorods with Large Specific Surface Area. Nanoscale Res. Lett. 2013, 8, 166. [Google Scholar] [CrossRef]
- Ji, H.; Liu, D.; Cheng, H.; Zhang, C.; Yang, L.; Ren, D. Infrared Thermochromic Properties of Monoclinic VO 2 Nanopowders Using a Malic Acid-Assisted Hydrothermal Method for Adaptive Camouflage. RSC Adv. 2017, 7, 5189–5194. [Google Scholar] [CrossRef]
- Liu, C.; Shih, K.; Gao, Y.; Li, F.; Wei, L. Dechlorinating Transformation of Propachlor through Nucleophilic Substitution by Dithionite on the Surface of Alumina. J. Soils Sediments 2012, 12, 724–733. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr. Build. Mater. 2016, 114, 276–289. [Google Scholar] [CrossRef]
- Melele, S.J.K.; Banenzoué, C.; Fotio, D.; Tchakouté, H.K.; Rüscher, C.H.; Nanseu, C.P.N. Improvement of the Reactivity of Soda–Lime–Silica Glass Solution as a Hardener for Producing Geopolymer Materials. SN Appl. Sci. 2019, 1, 1208. [Google Scholar] [CrossRef]
- Gougazeh, M. Geopolymers from Jordanian Metakaolin: Influence of Chemical and Mineralogical Compositions on the Development of Mechanical Properties. Jordan J. Civili Eng. 2013, 7, 236–257. [Google Scholar]
- Liang, K.; Cui, K.; Sabri, M.M.S.; Huang, J. Influence Factors in the Wide Application of Alkali-Activated Materials: A Critical Review about Efflorescence. Materials 2022, 15, 6436. [Google Scholar] [CrossRef] [PubMed]
- Simão, L.; Fernandes, E.; Hotza, D.; Ribeiro, M.J.; Montedo, O.R.K.; Raupp-Pereira, F. Controlling Efflorescence in Geopolymers: A New Approach. Case Stud. Constr. Mater. 2021, 15, e00740. [Google Scholar] [CrossRef]
- Longhi, M.A.; Zhang, Z.; Walkley, B.; Rodríguez, E.D.; Kirchheim, A.P. Strategies for Control and Mitigation of Efflorescence in Metakaolin-Based Geopolymers. Cem. Concr. Res. 2021, 144, 106431. [Google Scholar] [CrossRef]
- Ricciotti, L.; Molino, A.; Roviello, V.; Chianese, E.; Cennamo, P.; Roviello, G. Geopolymer Composites for Potential Applications in Cultural Heritage. Environments 2017, 4, 91. [Google Scholar] [CrossRef]
- Jin, G.; Wang, X.; Mao, H.; Ji, S.; Shi, Q. Preparation and Properties of Metakaolin-Fumed-Silica Geopolymer Modified with Sodium Silicate and Potassium Silicate Activators. Chin. J. Anal. Chem. 2024, 52, 100352. [Google Scholar] [CrossRef]
- Kim, G.; Cho, S.; Im, S.; Yoon, J.; Suh, H.; Kanematsu, M.; Machida, A.; Shobu, T.; Bae, S. Evaluation of the Thermal Stability of Metakaolin-Based Geopolymers According to Si/Al Ratio and Sodium Activator. Cem. Concr. Compos. 2024, 150, 105562. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, J.; Ye, G. The Pore Structure and Permeability of Alkali Activated Fly Ash. Fuel 2013, 104, 771–780. [Google Scholar] [CrossRef]
- Hodhod, H.; Abdeen, M.A.M. Experimental Comparative and Numerical Predictive Stu-Dies on Strength Evaluation of Cement Types: Effect of Specimen Shape and Type of Sand. Engineering 2010, 2, 559–572. [Google Scholar] [CrossRef]
- Sajedi, F.; Razak, H.A. Effects of Curing Regimes and Cement Fineness on the Compressive Strength of Ordinary Portland Cement Mortars. Constr. Build. Mater. 2011, 25, 2036–2045. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Li, Y.; Liang, C.; Huang, H.; Wang, S. Available Heavy Metals Concentrations in Agricultural Soils: Relationship with Soil Properties and Total Heavy Metals Concentrations in Different Industries. J. Hazard. Mater. 2024, 471, 134410. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology. Experientia Supplementum; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 101. [Google Scholar] [CrossRef]
- van Leeuwen, L.C.; Aldenberg, T. Environmental Risk Limits for Antimony 2012; RIVM Letter Report 601357001/2012; National Institute for Public Health and the Environment: Bilthoven, The Netherland, 2012. [Google Scholar]
- Sikora, A.; Zahra, F. Nosocomial Infection. 2023 Apr 27. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Tan, J.; Wang, D.; Cao, H.; Qiao, Y.; Zhu, H.; Liu, X. Effect of Local Alkaline Microenvironment on the Behaviors of Bacteria and Osteogenic Cells. ACS Appl. Mater. Interfaces 2018, 10, 42018–42029. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Kirk, M.F. pH as a Primary Control in Environmental Microbiology: 2. Kinetic Perspective. Front. Environ. Sci. 2018, 6, 101. [Google Scholar] [CrossRef]
- Padan, E.; Bibi, E.; Ito, M.; Krulwich, T.A. Alkaline pH Homeostasis in Bacteria: New Insights. Biochim. Biophys. Acta (BBA) -Biomembr. 2005, 1717, 67–88. [Google Scholar] [CrossRef] [PubMed]
- Thornton, L.A.; Burchell, R.K.; Burton, S.E.; Lopez-Villalobos, N.; Pereira, D.; MacEwan, I.; Fang, C.; Hatmodjo, A.C.; Nelson, M.A.; Grinberg, A.; et al. The Effect of Urine Concentration and pH on the Growth of Escherichia Coli in Canine Urine In Vitro. J. Vet. Intern. Med. 2018, 32, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Pasquina-Lemonche, L.; Burns, J.; Turner, R.D.; Kumar, S.; Tank, R.; Mullin, N.; Wilson, J.S.; Chakrabarti, B.; Bullough, P.A.; Foster, S.J.; et al. The Architecture of the Gram-Positive Bacterial Cell Wall. Nature 2020, 582, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Ropponen, H.-K.; Richter, R.; Hirsch, A.K.H.; Lehr, C.-M. Mastering the Gram-Negative Bacterial Barrier—Chemical Approaches to Increase Bacterial Bioavailability of Antibiotics. Adv. Drug Deliv. Rev. 2021, 172, 339–360. [Google Scholar] [CrossRef] [PubMed]
- Hagge, S.O.; Hammer, M.U.; Wiese, A.; Seydel, U.; Gutsmann, T. Calcium Adsorption and Displacement: Characterization of Lipid Monolayers and Their Interaction with Membrane-Active Peptides/Proteins. BMC Biochem. 2006, 7, 15. [Google Scholar] [CrossRef]
- Swairjo, M.A.; Concha, N.O.; Kaetzel, M.A.; Dedman, J.R.; Seaton, B.A. Ca2+-Bridging Mechanism and Phospholipid Head Group Recognition in the Membrane-Binding Protein Annexin V. Nat. Struct. Biol. 1995, 2, 968–974. [Google Scholar] [CrossRef]
- Stautz, J.; Hellmich, Y.; Fuss, M.F.; Silberberg, J.M.; Devlin, J.R.; Stockbridge, R.B.; Hänelt, I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J. Mol. Biol. 2021, 433, 166968. [Google Scholar] [CrossRef]
- Wood, J.M. Osmotic Stress. In Bacterial Stress Responses; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 133–156. ISBN 978-1-68367-121-3. [Google Scholar]
- Kumar, P.; Kumar, T.; Singh, S.; Tuteja, N.; Prasad, R.; Singh, J. Potassium: A Key Modulator for Cell Homeostasis. J. Biotechnol. 2020, 324, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Lin, F.; Cao, S.; Wang, C.; Wu, H.; Shu, M.; Hu, C. Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc- loaded montmorillonite. J. Anim. Sci. Biotechnol. 2017, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Druzian, D.M.; Machado, A.K.; Pappis, L.; Vizzotto, B.S.; Ruiz, Y.P.M.; Galembeck, A.; Pavoski, G.; Espinosa, D.C.R.; da Silva, W.L. Synthesis, characterization, cytotoxicity and antimicrobial activity of a nanostructured mineral clay. Ceram. Int. 2023, 49, 31066–31076. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; De Roo Puente, Y.J.D.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial Approaches in Tissue Engineering Using Metal Ions and Nanoparticles: From Mechanisms to Applications. Bioact. Mater. 2021, 6, 4470–4490. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Varkey, A.J.; Dlamini, M.D.; Mansuetus, A.B.; Tiruneh, A.T. Germicidal Action of Some Metals/Metal Ions in Combating E. coli Bacteria in Relation to Their Electro-Chemical Properties. J. Water Resour. Prot. 2013, 2013. [Google Scholar] [CrossRef]
- Helmy, Y.; Fakher, S. Evaluating the Performance of Class F Fly Ash Compared to Class G Cement for Hydrocarbon Wells Cementing: An Experimental Investigation. Materials 2024, 17, 2710. [Google Scholar] [CrossRef]
Type of Waste | Suction Dust | Red Mud from Alumina Production | Electro-Filter Dust | Extraction Sludge from Food Supplement Industry | Extraction Sludge from Partially Stabilized Industrial Waste |
---|---|---|---|---|---|
Sample label | SW1 | SW2 | SW3 | SW4 | SW5 |
European waste catalog (EWC) | 06 04 05 | 11 01 09 | 19 01 05 | 16 03 06 | 19 03 04 |
Characteristics | Powdery, gray-black color | Powdery, gray-green color | Powdery, white color | Grainy, beige color | Grainy, muddy, red-brown color |
Residue (%) at 105 °C | 99.1 ± 0.8 | 58.3 ± 2.0 | 98.6 ± 2.5 | 65.0 ± 3.7 | 86.6 ± 1.5 |
pH | 7.2 | 3.0 | 11.2 | 7.1 | 10.9 |
Chlorides | <5 ppm | 25,678 ppm | 25,980 ppm | - | 300.7 ppm |
Sulfides | <5 ppm | 64.4 ppm | 16,510 ppm | - | 189.6 ppm |
Fluorides | <5 ppm | 0.35 ppm | 3900 ppm | - | - |
Nitrates | <5 ppm | 17.5 ppm | - | - | - |
Phosphates | <5 ppm | - | - | - | - |
Cyanides | - | <50 ppm | - | - | - |
Hydrocarbons | <100 ppm | C10-C40 < 2.5 ppm C5-C8 = 294 ppm | C10-C40 < 18 ppm C5-C8 < 1 ppm | C10-C40 < 100 ppm | C10-C40 < 5 ppm C5-C8 < 0.3 ppm |
Metal content | As = 0.210% Sb = 35.87% Ca = 0.090% Cr = 0.001% Fe = 0.050% Ni = 0.006% Pb = 0.060% K = 0.040% Cu = 0.003% Sn = 63.640% V = 0.015% Zn = 0.015% | Al = 0.17% Cr = 0.18% Fe = 73.39% Mn = 0.45% Ni = 0.01% Pb = 0.03% Cu = 0.05% Zn = 25.72% | Cr = 24.44% Ni = 11.71% Cu = 40.51% Sn = 11.67% Zn = 11.67% | Mn = 8.18% Zn = 14.62% Cr = 5.85% Sb = 7.02% Se = 58.48% V = 5.85% | Al = 20.30% Fe = 5.45% Cu = 19.80% Zn = 54.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viola, V.; D’Angelo, A.; Vertuccio, L.; Catauro, M. Metakaolin-Based Geopolymers Filled with Industrial Wastes: Improvement of Physicochemical Properties through Sustainable Waste Recycling. Polymers 2024, 16, 2118. https://doi.org/10.3390/polym16152118
Viola V, D’Angelo A, Vertuccio L, Catauro M. Metakaolin-Based Geopolymers Filled with Industrial Wastes: Improvement of Physicochemical Properties through Sustainable Waste Recycling. Polymers. 2024; 16(15):2118. https://doi.org/10.3390/polym16152118
Chicago/Turabian StyleViola, Veronica, Antonio D’Angelo, Luigi Vertuccio, and Michelina Catauro. 2024. "Metakaolin-Based Geopolymers Filled with Industrial Wastes: Improvement of Physicochemical Properties through Sustainable Waste Recycling" Polymers 16, no. 15: 2118. https://doi.org/10.3390/polym16152118
APA StyleViola, V., D’Angelo, A., Vertuccio, L., & Catauro, M. (2024). Metakaolin-Based Geopolymers Filled with Industrial Wastes: Improvement of Physicochemical Properties through Sustainable Waste Recycling. Polymers, 16(15), 2118. https://doi.org/10.3390/polym16152118