Brown Algae as a Valuable Substrate for the Cost-Effective Production of Poly-γ-Glutamic Acid for Applications in Cream Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biosynthesis of γ-PGA
2.1.1. Microorganism
2.1.2. Fermentation Media
2.1.3. Fermentation Parameters
2.2. Isolation and Purification of γ-PGA
2.3. Statistical Analysis
2.4. Characterisation of γ-PGA
2.5. Hydration Experiments of γ-PGA
2.6. Biocompatibility of γ-PGA
2.7. Analytical Evaluation of γ-PGA UV Protection
2.8. Photosensitisation Test
2.9. Rheological Analysis
2.10. γ-PGA-Based Cream Formulations
2.11. Optical Transmittance Spectra of Creams
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callejas-Quijada, G.; Escobar-Chávez, J.J.; Gieraldin, C.-L.; Alejandra, P.-M.X.; Aguirre-Álvarez, G. Hyaluronic Acid. Extraction Methods, Sources and Applications. Polymers 2023, 15, 3473. [Google Scholar] [CrossRef]
- Allison, D.B.; Review, K.J.G.-A. Hyaluronan: A Powerful Tissue Engineering Tool. Tissue Eng. 2006, 12, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Fagien, S.; Cassuto, D. Reconstituted Injectable Hyaluronic Acid. Plast. Reconstr. Surg. 2012, 130, 208–217. [Google Scholar] [CrossRef]
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological Production of Hyaluronic Acid: A Mini Review. 3 Biotech 2016, 6, 67. [Google Scholar] [CrossRef]
- Ghosh, S. Hyaluronic Acid Personal Care Products Market. Available online: https://www.futuremarketinsights.com/reports/hyaluronic-acid-personal-care-products-market#:~:text=The%20global%20hyaluronic%20acid%20personal (accessed on 10 June 2024).
- Jing, W.; DeAngelis, P.L. Synchronized Chemoenzymatic Synthesis of Monodisperse Hyaluronan Polymers. J. Biol. Chem. 2004, 279, 42345–42349. [Google Scholar] [CrossRef] [PubMed]
- Widner, B.; Behr, R.; Von Dollen, S.; Tang, M.; Heu, T.; Sloma, A.; Sternberg, D.; De Angelis, P.L.; Weigel, P.H.; Brown, S. Hyaluronic Acid Production in Bacillus subtilis. Appl. Environ. Microbiol. 2005, 71, 3747–3752. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Li, J.; Du, G.; Chen, J. Microbial Production of Hyaluronic Acid: Current State, Challenges, and Perspectives. Microb. Cell Factories 2011, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Flégeau, K.; Jing, J.; Brusini, R.; Gallet, M.; Moreno, C.; Walker, L.; Bourdon, F.; Faivre, J. Multidose Hyaluronidase Administration as an Optimal Procedure to Degrade Resilient Hyaluronic Acid Soft Tissue Fillers. Molecules 2023, 28, 1003. [Google Scholar] [CrossRef]
- Buescher, J.M.; Margaritis, A. Microbial Biosynthesis of Polyglutamic Acid Biopolymer and Applications in the Biopharmaceutical, Biomedical and Food Industries. Crit. Rev. Biotechnol. 2007, 27, 1–19. [Google Scholar] [CrossRef]
- Ashiuchi, M. Occurrence and Biosynthetic Mechanism of Poly-Gamma-Glutamic Acid. In Amino-Acid Homopolymers Occurring in Nature; Springer: Berlin/Heidelberg, Germany, 2010; pp. 77–93. [Google Scholar]
- Parati, M.; Khalil, I.; Tchuenbou-Magaia, F.; Adamus, G.; Mendrek, B.; Hill, R.; Radecka, I. Building a Circular Economy around Poly(D/L-γ-Glutamic Acid)—A Smart Microbial Biopolymer. Biotechnol. Adv. 2022, 61, 108049. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Chien, J.T.; Ho, G.H.; Yang, J.; Chen, B.H. Equilibrium and Kinetic Studies on Sorption of Basic Dyes by a Natural Biopolymer Poly(γ-Glutamic Acid). Biochem. Eng. J. 2006, 31, 204–215. [Google Scholar] [CrossRef]
- Bai, N.; He, Y.; Zhang, H.; Zheng, X.; Zeng, R.; Li, Y.; Li, S.; Lv, W. γ-Polyglutamic Acid Production, Biocontrol, and Stress Tolerance: Multifunction of Bacillus subtilis A-5 and the Complete Genome Analysis. Int. J. Environ. Res. Public Health 2022, 19, 7630. [Google Scholar] [CrossRef]
- Deol, R.; Louis, A.; Glazer, H.L.; Hosseinion, W.; Bagley, A.; Chandrangsu, P. Poly-Gamma-Glutamic Acid Secretion Protects Bacillus subtilis from Zinc and Copper Intoxication. Microbiol. Spectr. 2022, 10, e0132921. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Jin, L.; Hu, R.; Yi, Z.; Li, J.; Wu, Y.; Xi, X.; Wu, Z. Poly(gamma,L-glutamic Acid)-Cisplatin Conjugate Effectively Inhibits Human Breast Tumor Xenografted in Nude Mice. Biomaterials 2006, 27, 5958–5965. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Han, Y.; Zheng, X.; Xue, B.; Zhang, X.; Mahmut, Z.; Wang, Y.; Dong, B.; Zhang, C.; Gao, D.; et al. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. Materials 2023, 17, 15. [Google Scholar] [CrossRef]
- Kang, H.-S.; Park, S.-H.; Lee, Y.-G.; Son, T.-I. Polyelectrolyte Complex Hydrogel Composed of Chitosan and Poly(γ-Glutamic Acid) for Biological Application: Preparation, Physical Properties, and Cytocompatibility. J. Appl. Polym. Sci. 2006, 103, 386–394. [Google Scholar] [CrossRef]
- Li, L.; Wang, N.; Jin, X.; Deng, R.; Nie, S.; Sun, L.; Wu, Q.; Wei, Y.; Gong, C. Biodegradable and Injectable in Situ Cross-Linking Chitosan-Hyaluronic Acid Based Hydrogels for Postoperative Adhesion Prevention. Biomaterials 2014, 35, 3903–3917. [Google Scholar] [CrossRef] [PubMed]
- Dou, C.; Li, Z.; Luo, Y.; Gong, J.; Li, Q.; Zhang, J.; Zhang, Q.; Qiao, C. Bio-Based Poly (γ-Glutamic Acid)-Gelatin Double-Network Hydrogel with High Strength for Wound Healing. Int. J. Biol. Macromol. 2022, 202, 438–452. [Google Scholar] [CrossRef] [PubMed]
- Nabi, I.; Das, S. poly-glutamic acid (pga)—Structure, synthesis, genomic organization and its application: A review. Int. J. Pharm. Sci. Res. 2015, 6, 2258–2280. [Google Scholar] [CrossRef]
- Xu, G.; Zha, J.; Cheng, H.; Ibrahim, M.H.A.; Yang, F.; Dalton, H.; Cao, R.; Zhu, Y.; Fang, J.; Chi, K.; et al. Engineering Corynebacterium Glutamicum for the de Novo Biosynthesis of Tailored Poly-γ-Glutamic Acid. Metab. Eng. 2019, 56, 39–49. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.M.; Jang, W.J.; Park, H.D.; Kim, Y.; Kim, C.; Kong, I. Efficient Production of Poly γ-D-Glutamic Acid from the Bloom-Forming Green Macroalgae, Ulva sp., by Bacillus sp. SJ-10. Biotechnol. Bioeng. 2019, 116, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Parati, M.; Philip, C.; Mendrek, B.; Townrow, D.; Khalil, I.; Tchuenbou-Magaia, F.; Stanley, M.; Kowalczuk, M.; Adamus, G.; Radecka, I. A Circular Bioprocess Application of Algal-Based Substrate for Bacillus subtilis Natto Production of γ-PGA. Front. Chem. 2023, 11, 1158147. [Google Scholar] [CrossRef]
- Ben-Zur, N.; Goldman, D.M. γ-Poly Glutamic Acid: A Novel Peptide for Skin Care. Cosmet. Toilet. 2007, 122, 2–6. [Google Scholar]
- Wang, R.; Wang, X.; Zhan, Y.; Xu, Z.; Xu, Z.; Feng, X.; Li, S.; Xu, H. A Dual Network Hydrogel Sunscreen Based on Poly-γ-Glutamic Acid/Tannic Acid Demonstrates Excellent Anti-UV, Self-Recovery, and Skin-Integration Capacities. ACS Appl. Mater. Interfaces 2019, 11, 37502–37512. [Google Scholar] [CrossRef]
- Jin, H.; Choi, J.-C.; Lim, Y.T.; Sung, M.-H. Prebiotic Effects of Poly-Gamma-Glutamate on Bacterial Flora in Murine Gut. J. Microbiol. Biotechnol. 2017, 27, 412–415. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, D.; Ren, H. Economical Production of Agricultural γ-Polyglutamic Acid Using Industrial Wastes by Bacillus subtilis. Biochem. Eng. J. 2019, 146, 117–123. [Google Scholar] [CrossRef]
- Nair, P.G.; Joseph, E.; Killi, N.; Konchada, S.; Nisal, A.; Gundloori, R.V.N.; Dharne, M.S. One-Pot Bioconversion of Tomato Waste into Poly-Gamma-Glutamic Acid (γ-PGA) Biopolymer by a Novel Biocatalyst. ACS Sustain. Chem. Eng. 2021, 9, 14330–14334. [Google Scholar] [CrossRef]
- Bajaj, I.B.; Lele, S.S.; Singhal, R.S. Enhanced Production of Poly (γ-Glutamic Acid) from Bacillus licheniformis NCIM 2324 in Solid State Fermentation. J. Ind. Microbiol. Biotechnol. 2008, 35, 1581–1586. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial Synthesis of Poly-γ-Glutamic Acid: Current Progress, Challenges, and Future Perspectives. Biotechnol. Biofuels 2016, 9, 134. [Google Scholar] [CrossRef]
- Parati, M.; Clarke, L.; Anderson, P.; Hill, R.; Khalil, I.; Tchuenbou-Magaia, F.; Stanley, M.S.; McGee, D.; Mendrek, B.; Kowalczuk, M.; et al. Microbial Poly-γ-Glutamic Acid (γ-PGA) as an Effective Tooth Enamel Protectant. Polymers 2022, 14, 2937. [Google Scholar] [CrossRef]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The Estimation of the Bactericidal Power of the Blood. Epidemiol. Infect. 1938, 38, 732–749. [Google Scholar] [CrossRef]
- Lee, N.-R.; Go, T.-H.; Lee, S.-M.; Jeong, S.-Y.; Park, G.-T.; Hong, C.-O.; Son, H.-J. In Vitro Evaluation of New Functional Properties of Poly-γ-Glutamic Acid Produced by Bacillus subtilis D7. Saudi J. Biol. Sci. 2014, 21, 153–158. [Google Scholar] [CrossRef]
- Wang, L.-L.; Liu, Y.-M.; Liu, H.-M.; Shi, Q.-S.; Peng, R.-Q.; Xie, X.-B. The Role of Structural Evolution in the Complexation and Flocculation of Heavy Metals by the Microbial Product Poly-γ-Glutamic Acid. Chemosphere 2022, 308, 136441. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, H.; Wang, L.; Zhang, Y.; Tian, H.; Ma, X. Effect of Poly-γ-Glutamic Acid on the Stability of Set Yoghurts. J. Food Sci. Technol. 2018, 55, 4634–4641. [Google Scholar] [CrossRef]
- Shih, I.-L.; Wu, P.-J.; Shieh, C.-J. Microbial Production of a Poly(γ-Glutamic Acid) Derivative by Bacillus subtilis. Process Biochem. 2005, 40, 2827–2832. [Google Scholar] [CrossRef]
- Gross, R.A. Bacterial Y-Poly(Glutamic Acid). In Biopolymers from Renewable Resources; Springer: Berlin/Heidelberg, Germany, 1998; pp. 195–219. [Google Scholar]
- Ho, G.-H.; Yang, J.T.; Yang, T.-H.T. Gamma Polyglutamic Acid (Gamma-PGA, H Form), Gamma-Polyglutamate Hydrogels for Use as Super Moisturizers in Cosmetic and Personal Care Products 2005. Patent EP1690525A1, 16 August 2006. [Google Scholar]
- Wang, L.-L.; Chen, J.-T.; Wang, L.-F.; Wu, S.; Zhang, G.; Yu, H.-Q.; Ye, X.; Shi, Q.-S. Conformations and Molecular Interactions of Poly-γ-Glutamic Acid as a Soluble Microbial Product in Aqueous Solutions. Sci. Rep. 2017, 7, 12787. [Google Scholar] [CrossRef]
- CEVA—Algae Technology & Innovation Centre Ascophyllum Nodosum Nutritional Data Sheet. Available online: https://www.ceva-algues.com/wp-content/uploads/2021/04/EN-Ascophyllum-nodosum-1.pdf (accessed on 10 June 2024).
- Dini, I.; Laneri, S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021, 26, 3921. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.S.; Cadet, J.; Greer, A.; Thomas, A.H. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem. Photobiol. 2021, 97, 1456–1483. [Google Scholar] [CrossRef]
- Aguilera, J.; Gracia-Cazaña, T.; Gilaberte, Y. New Developments in Sunscreens. Photochem. Photobiol. Sci. 2023, 22, 2473–2482. [Google Scholar] [CrossRef]
- Jesus, A.; Mota, S.; Torres, A.; Cruz, M.T.; Sousa, E.; Almeida, I.F.; Cidade, H. Antioxidants in Sunscreens: Which and What For? Antioxidants 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Acharya, D.R.; Hala, V.; Vora, L.K. Shilpa Dawre Sunscreens: A Comprehensive Review with the Application of Nanotechnology. J. Drug Deliv. Sci. Technol. 2023, 86, 104720. [Google Scholar] [CrossRef]
- Ro, G.; Gu, Y.; Shim Woo-seon, D. Stably-Suspended Polymer Composite Nanoparticles Containing Organic Sunscreen Agents and Preparing Method Thereof 2018. Patent KR20180024903A, 8 March 2018. [Google Scholar]
- Álvarez-Gómez, F.; Korbee, N.; Casas-Arrojo, V.; Abdala-Díaz, R.; Figueroa, F. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules 2019, 24, 341. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.-S.; Ahn, H.-J.; Song, K.-W. Rheological Investigation of Body Cream and Body Lotion in Actual Application Conditions. Korea-Aust. Rheol. J. 2015, 27, 241–251. [Google Scholar] [CrossRef]
- Adeyeye, M.C.; Jain, A.C.; Ghorab, M.K.M.; Reilly, W.J. Viscoelastic Evaluation of Topical Creams Containing Microcrystalline Cellulose/Sodium Carboxymethyl Cellulose as Stabilizer. AAPS PharmSciTech 2002, 3, 16–25. [Google Scholar] [CrossRef]
- Viola, P.; Viola, M. Virgin Olive Oil as a Fundamental Nutritional Component and Skin Protector. Clin. Dermatol. 2009, 27, 159–165. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Sopade, P.A.; Halley, P.J.; Cichero, J.A.Y.; Ward, L.C.; Liu, J.; Varliveli, S. Rheological Characterization of Food Thickeners Marketed in Australia in Various Media for the Management of Dysphagia. III. Fruit Juice as a Dispersing Medium. J. Food Eng. 2008, 86, 604–615. [Google Scholar] [CrossRef]
- Rao, G.C.S.; Ramadevi, K.; Sirisha, K. Effect of β-Cyclodextrin on Rheological Properties of Some Viscosity Modifiers. Indian J. Pharm. Sci. 2014, 76, 545–548. [Google Scholar]
Medium Name | Components | Quantity (g/L) |
---|---|---|
GS | Sucrose | 50 |
L-Glutamate | 20 | |
NaCl | 50 | |
KH2PO4 | 2.7 | |
Na2HPO4 | 4.2 | |
MgSO4·7H2O | 5 | |
Murashige–Skoog vitamin solution | 1 mL/L | |
GS25 | Sucrose | 50 |
L-Glutamate | 20 | |
NaCl | 25 | |
KH2PO4 | 2.7 | |
Na2HPO4 | 4.2 | |
MgSO4·7H2O | 5 | |
Murashige–Skoog vitamin solution | 1 mL/L | |
GS0 | Sucrose | 50 |
L-Glutamate | 20 | |
NaCl | 0 | |
KH2PO4 | 2.7 | |
Na2HPO4 | 4.2 | |
MgSO4·7H2O | 5 | |
Murashige–Skoog vitamin solution | 1 mL/L | |
Ap0 | Ascophyllum nodosum | 40 |
Sucrose | 25 | |
L-Glutamate | 10 | |
NaCl | 0 | |
Ap25 | Ascophyllum nodosum | 40 |
Sucrose | 25 | |
L-Glutamate | 10 | |
NaCl | 25 | |
Ap50 | Ascophyllum nodosum | 40 |
Sucrose | 25 | |
L-Glutamate | 10 | |
NaCl | 50 | |
ApMn0 | Ascophyllum nodosum | 40 |
Sucrose | 25 | |
L-glutamate | 10 | |
NaCl | 0 | |
MnSO4 | 0.415 g/L | |
ApMn25 | Ascophyllum nodosum | 40 |
Sucrose | 25 | |
L-Glutamate | 10 | |
NaCl | 25 | |
MnSO4 | 0.415 g/L | |
ApMn50 | Ascophyllum nodosum | 40 |
Sucrose | 25 | |
L-Glutamate | 10 | |
NaCl | 50 | |
MnSO4 | 0.415 g/L |
Commercial Name | Supplier | Type |
---|---|---|
440 kDa | YR Spec | Commercial γ-PGA |
10,000 Da | Bonding Chemical | Commercial γ-PGA |
1100 kDa | Bonding Chemical | Commercial γ-PGA |
Hyaluronic acid 1000 kDa | Peak Supplements (Bridgend, UK) | Commercial bacterial hyaluronic acid |
Glycerol | Special Ingredients | Hygroscopic plant-based sugar |
Commercial Name | Supplier | Type |
---|---|---|
E45 | Boots | Moisturising cream |
Shea Body Butter | The Body Shop | Moisturising butter |
Meringa Body Butter | The Body Shop | Moisturising butter |
γ-PGA Lotion | Boots | Hand lotion |
SPF 50+ Nivea | Nivea | UV protection cream |
Cien SPF 50+ | Sunscreen | |
SPF 25+ | Aethic | Sunscreen marine safe |
10 kDa | 440 kDa | 1100 kDa | |
---|---|---|---|
γ-PGA | 2 | 2 | 2 |
Gum Arabic | 2 | 2 | 2 |
Potassium hydroxide | 0.25 | 0.25 | 0.25 |
Stearic acid | 6 | 6 | 6 |
Extra virgin olive oil | 0 | 0 | 0 |
Cyclodextrin | 2 | 2 | 2 |
Distilled water | 16 | 16 | 16 |
Essential oil (lemongrass oil) | 100 μL | 100 μL | 100 μL |
Cream Formulation | Description | pH |
---|---|---|
440 kDa | Lotion cream with 440 kDa γ-PGA | 7.05 |
10 kDa | Lotion cream with 10 kDa γ-PGA | 7.11 |
1100 kDa | Lotion cream with 1100 kDa γ-PGA | 6.93 |
Production Method | Mn [kDa] | Mw [kDa] | Mw/Mn | XRD |
---|---|---|---|---|
YR spec γ-PGA | 250 | 440 | 1.8 | Amorphous |
Bonding chemical 10,000 | 115 | 216 | 1.9 | Semi-crystalline |
Bonding chemical 1,100,000 | 120 | 250 | 2.1 | Semi-crystalline |
GS, 0 g/L NaCl PTF [24] | 3320 | 3700 | 1.1 | Amorphous |
GS, 25 g/L NaCl PTF [24] | 1900 | 2310 | 1.2 | Semi-crystalline |
GS, 50 g/L NaCl PTF [24] | 1810 | 2700 | 1.5 | Crystalline |
GS, 25 g/L NaCl + MnSO4 PTF [24] | 740 | 1280 | 1.7 | Crystalline |
Ap, 0 g/L NaCl PTF (*) | 66 | 210 | 3.2 | Amorphous |
Ap, 25 g/L NaCl PTF (*) | 160 | 250 | 2.8 | Amorphous |
13 | 36 | 1.6 | ||
12 | 24 | 2.0 | ||
Ap, 50 g/L NaCl PTF (*) | 38 | 102 | 2.7 | Amorphous |
ApMn, 0 g/L NaCl PTF (***) | 250 | 900 | 3.6 | Amorphous |
ApMn, 25 g/L NaCl PTF (*) | 62 | 152 | 2.5 | Amorphous |
ApMn, 50 g/L NaCl PTF (*) | 66 | 150 | 2.3 | Amorphous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parati, M.; Philip, C.; Allinson, S.L.; Mendrek, B.; Khalil, I.; Tchuenbou-Magaia, F.; Kowalczuk, M.; Adamus, G.; Radecka, I. Brown Algae as a Valuable Substrate for the Cost-Effective Production of Poly-γ-Glutamic Acid for Applications in Cream Formulations. Polymers 2024, 16, 2091. https://doi.org/10.3390/polym16142091
Parati M, Philip C, Allinson SL, Mendrek B, Khalil I, Tchuenbou-Magaia F, Kowalczuk M, Adamus G, Radecka I. Brown Algae as a Valuable Substrate for the Cost-Effective Production of Poly-γ-Glutamic Acid for Applications in Cream Formulations. Polymers. 2024; 16(14):2091. https://doi.org/10.3390/polym16142091
Chicago/Turabian StyleParati, Mattia, Catherine Philip, Sarah L. Allinson, Barbara Mendrek, Ibrahim Khalil, Fideline Tchuenbou-Magaia, Marek Kowalczuk, Grazyna Adamus, and Iza Radecka. 2024. "Brown Algae as a Valuable Substrate for the Cost-Effective Production of Poly-γ-Glutamic Acid for Applications in Cream Formulations" Polymers 16, no. 14: 2091. https://doi.org/10.3390/polym16142091
APA StyleParati, M., Philip, C., Allinson, S. L., Mendrek, B., Khalil, I., Tchuenbou-Magaia, F., Kowalczuk, M., Adamus, G., & Radecka, I. (2024). Brown Algae as a Valuable Substrate for the Cost-Effective Production of Poly-γ-Glutamic Acid for Applications in Cream Formulations. Polymers, 16(14), 2091. https://doi.org/10.3390/polym16142091