Creep Failure Characteristics and Mathematical Modeling of High-Density Polyethylene Geomembranes under High Stress Levels
Abstract
:1. Introduction
2. Laboratory Investigations
2.1. Tensile Tests
2.2. Creep Test Equipment and Preparation of Geomembrane Specimens
2.3. Creep Tests under Three Different High Stress Levels
2.4. Comparison of Creep Curves under Low, Medium, and High Load Levels
3. Modelling of Creep with Respect to High Load Levels
4. Conclusions
- 1.
- Displacement-controlled tensile tests under constant elongation velocity show that after the stress peak, the material undergoes strain softening and subsequently strain hardening up to the breaking state.
- 2.
- For different membrane thicknesses, the stress–strain curves are slightly different. Such a size effect can be explained by the inhomogeneous evolution of the microstructure of the material, particularly when the local necking of the membrane specimen becomes dominant.
- 3.
- The creep tests carried out show that the creep characteristic is strongly dependent on the applied load level. Under high load levels, the geomembrane experienced the tertiary creep stage, which did not occur under low and medium load levels. From the Sherby–Dorn plot, it can be concluded that the creep rate reaches the minimum value in the secondary creep stage and increases rapidly in the tertiary creep stage. The creep rate of the rapid creep growth stage is much greater than that in the secondary creep stage. The value of creep strain in the tertiary creep stage accounted for more than 80% of strain when creep rupture occurs. For higher load levels, the so-called critical creep time related to a bilinear approximation is lower. It was found that for very high load levels, the amount of the critical creep time and failure time does not necessarily follow the expended trend. Therefore, in creep tests, significant size effects can also be detected under higher load levels.
- 4.
- For low, medium, and high load levels, refined fitting functions are proposed, which permit the simulation of the individual creep characteristics within the whole range of particular load levels.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Müller, W.W. HDPE Geomembranes in Geotechnics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Chou, Y.C.; Rowe, K.; Brachman, R.W.I. Erosion of silty sand tailings through a geomembrane defect under filter incompatible conditions. Can. Geotech 2018, 55, 1564–1576. [Google Scholar] [CrossRef]
- Bhowmik, R.; Shahu, J.T.; Datta, M. Failure analysis of a geomembrane lined reservoir embankment. Geotext. Geomembr. 2018, 46, 52–65. [Google Scholar] [CrossRef]
- Cen, W.J.; Bauer, E.; Wen, L.S.; Wang, H.; Sun, Y.J. Experimental investigations and constitutive modeling of cyclic interface shearing between HDPE geomembrane and sandy gravel. Geotext. Geomembr. 2019, 47, 269–279. [Google Scholar] [CrossRef]
- Drozdov, A.D. Creep rupture and viscoelastoplasticity of polypropylene. Eng. Fract. Mech. 2010, 77, 2277–2293. [Google Scholar] [CrossRef]
- Eldesouky, H.M.G.; Brachman, R.W.I. Calculating local geomembrane strains from a single gravel particle with thin plate theory. Geotext. Geomembr. 2018, 46, 101–110. [Google Scholar] [CrossRef]
- Lustiger, A.; Markham, R.L. Importance of tie molecules in preventing polyethylene fracture under long-term loading conditions. Polymer 1983, 24, 1647–1654. [Google Scholar] [CrossRef]
- Zhou, H.Z.; Alexander, C. Temperature effects on slow crack growth in pipe grade PE. In Proceedings of the 68th Society of Plastics Engineers Annual Technical Conference, Orlando, FL, USA, 16–20 May 2010; pp. 176–181. [Google Scholar]
- Ewais, A. Longevity of HDPE Geomembranes in Geoenvironmental Applications; Queen’s University: Kingston, ON, Canada, 2014. [Google Scholar]
- Wang, J.; Xu, L.; Lin, Z.; Tang, Y. Study on creep characteristics of geogrids considered sand-geosynthetics interaction under different loading levels. J. Eng. Fibers Fabr. 2020, 15, 1925847060. [Google Scholar] [CrossRef]
- Amjadi, M.; Fatemi, A. Creep behavior and modeling of high-density polyethylene (HDPE). Polym. Test. 2021, 94, 107031. [Google Scholar] [CrossRef]
- Drozdov, A.D.; Christiansen, J.D. Viscoelasticity and viscoplasticity of semicrystalline polymers: Structure–property relations for high-density polyethylene. Comput. Mater. Sci. 2007, 39, 729–751. [Google Scholar] [CrossRef]
- Koerner, R.M.; Koerner, G.; Hsuan, Y. Creep tension testing of geosynthetics. GSI White Pap. 2014, 29, 3–4. [Google Scholar]
- Guo, Y.; Xin, C.; Song, M.; He, Y. Study on short- and long-term creep behavior of plastics geogrid. Polym. Test. 2005, 24, 793–798. [Google Scholar] [CrossRef]
- Yeo, S.S.; Hsuan, Y.G. Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotext. Geomembr. 2010, 28, 409–421. [Google Scholar] [CrossRef]
- Kühl, A.; Muñoz-Rojas, P.A.; Barbieri, R.; Benvenutti, I.J. A procedure for modeling the nonlinear viscoelastoplastic creep of HDPE at small strains. Polym. Eng. Sci. 2017, 57, 144–152. [Google Scholar] [CrossRef]
- Tatsuaki, N.; Kazuhiko, N.; Takaharu, N.; Teruhisa, K. Creep characteristic and estimation of long term strength of HDPE geomembrane liner in waste landfill. Doboku Gakkai Ronbunshu 2002, 61, 75–83. [Google Scholar] [CrossRef]
- Helwany, B.; Wu, J.T.H. A generalized creep model for geosynthetics. In Earth Reinforcement Practice; A.A. BALKEMA: Fukuoka, Japan, 1992. [Google Scholar]
- Sawicki, A.; Kazimierowicz-Frankowska, K. Creep behaviour of geosynthetics. Geotext. Geomembr. 1998, 16, 365–382. [Google Scholar] [CrossRef]
- Cen, W.J.; Wen, Z.Y.; Li, D.J.; Wang, L.B. Experimental study and numerical modelling on creep and creep recovery characteristics of geomembrane. Chin. J. Geotech. 2022, 44, 2143–2150. [Google Scholar] [CrossRef]
- Men, Y.; Rieger, J.; Homeyer, J. Synchrotron Ultrasmall-Angle X-ray Scattering Studies on Tensile Deformation of Poly(1-butene). Macromolecules 2004, 37, 9481–9488. [Google Scholar] [CrossRef]
- Nathani, H.; Dasari, A.; Misra, R.D.K. On the reduced susceptibility to stress whitening behavior of melt intercalated polybutene–clay nanocomposites during tensile straining. Acta. Mater. 2004, 52, 3217–3227. [Google Scholar] [CrossRef]
- Wang, P.; Hutchings, I.M.; Duncan, S.J.; Jenkins, L.; Woo, E. Strain whitening of a thermoplastic olefin material. J. Mater. Sci. 2006, 41, 4847–4859. [Google Scholar] [CrossRef]
- Awaja, F.; Zhang, S.; Tripathi, M.; Nikiforov, A.; Pugno, N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016, 83, 536–573. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhang, W.G.; Fan, M.; Xiao, Z.M. Stress investigation on a cracked craze interacting with a nearby circular inclusion in polymer composites. Acta. Mech. 2017, 228, 1213–1228. [Google Scholar] [CrossRef]
- Liu, X.L.; Huang, Y.J.; Deng, C.; Wang, X.J.; Tong, W.; Liu, Y.X.; Huang, J.Q.; Yang, Q.; Liao, X.; Li, G.X. Study on the creep behavior of polypropylene. Polym. Eng. Sci. 2009, 49, 1375–1382. [Google Scholar] [CrossRef]
- Ségard, E.; Benmedakhene, S.; Laksimi, A.; Laï, D. Damage analysis and the fibre–matrix effect in polypropylene reinforced by short glass fibres above glass transition temperature. Compos. Struct. 2003, 60, 67–72. [Google Scholar] [CrossRef]
Thickness (mm) | Density (g/cm3) | Peak Strength (MPa) | Peak Elongation (%) | Breaking Strength (MPa) | Breaking Elongation (%) |
---|---|---|---|---|---|
0.5 | 0.94 | 11.42 | 12.49 | 10.08 | 506.38 |
1.5 | 10.50 | 17.00 | 10.45 | 610.32 |
Thickness | Load Level (%) | Critical Strain (%) | Strain at Break (%) | Critical Time (min) | Failure Time (min) | tf/tcr |
---|---|---|---|---|---|---|
0.5 mm | 90 | 43.40 | 193.1 | 404.68 | 453.22 | 1.12 |
80 | 27.11 | 195.7 | 3694.39 | 4063.33 | 1.10 | |
70 | 20.92 | 187.7 | 34,244.75 | 38,849.50 | 1.13 | |
1.5 mm | 90 | 39.57 | 277.5 | 22.53 | 24.02 | 1.07 |
80 | 54.76 | 280.7 | 3075.96 | 3312.50 | 1.08 | |
70 | 46.08 | 274.2 | 31,352.28 | 34,630.00 | 1.10 |
Thickness | Load Level (%) | Creep Velocity in Stages B–C (mm/h) | Creep Velocity in Stages D–E (mm/h) |
---|---|---|---|
0.5 mm | 90 | 6.016 | 150.053 |
80 | 0.334 | 22.688 | |
70 | 0.034 | 1.569 | |
1.5 mm | 90 | 80.07 | 9018.02 |
80 | 1.020 | 54.727 | |
70 | 0.079 | 3.716 |
Thickness | Load Level (%) | E1 (MPa) | E2 (MPa) | η1 (MPa·h) | η2 (MPa·h) |
---|---|---|---|---|---|
0.5 mm | 10 | 301.46 | Equation (3) | Equation (4) | / |
20 | / | ||||
30 | / | ||||
40 | / | ||||
50 | Equation (5) | ||||
60 | |||||
1.5 mm | 10 | 301.46 | Equation (6) | Equation (7) | / |
20 | / | ||||
30 | / | ||||
40 | / | ||||
50 | Equation (8) | ||||
60 |
Thickness | Load Level (%) | E1 (MPa) | E2 (MPa) | η1 (MPa·h) | η2 (MPa·h) | Ψ | n | m |
---|---|---|---|---|---|---|---|---|
0.5 mm | 90 | 301.46 | Equation (3) | Equation (4) | Equation (13) | 7.76 | Equation (15) | Equation (16) |
80 | ||||||||
70 | ||||||||
1.5 mm | 90 | 301.46 | Equation (6) | Equation (7) | Equation (14) | 14.52 | Equation (17) | Equation (18) |
80 | ||||||||
70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Cen, W.; Bauer, E.; Wei, J.; Wen, Z.; Yan, J. Creep Failure Characteristics and Mathematical Modeling of High-Density Polyethylene Geomembranes under High Stress Levels. Polymers 2024, 16, 2019. https://doi.org/10.3390/polym16142019
Wang L, Cen W, Bauer E, Wei J, Wen Z, Yan J. Creep Failure Characteristics and Mathematical Modeling of High-Density Polyethylene Geomembranes under High Stress Levels. Polymers. 2024; 16(14):2019. https://doi.org/10.3390/polym16142019
Chicago/Turabian StyleWang, Libo, Weijun Cen, Erich Bauer, Jiangliang Wei, Zhenyu Wen, and Jun Yan. 2024. "Creep Failure Characteristics and Mathematical Modeling of High-Density Polyethylene Geomembranes under High Stress Levels" Polymers 16, no. 14: 2019. https://doi.org/10.3390/polym16142019
APA StyleWang, L., Cen, W., Bauer, E., Wei, J., Wen, Z., & Yan, J. (2024). Creep Failure Characteristics and Mathematical Modeling of High-Density Polyethylene Geomembranes under High Stress Levels. Polymers, 16(14), 2019. https://doi.org/10.3390/polym16142019