Engineering of Silane–Pyrrolidone Nano/Microparticles and Anti-Fogging Thin Coatings
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Surface Oxidation of Polyethylene Films
2.2.2. Preparation of PVP
2.2.3. Preparation of Silane–Pyrrolidone Monomer
2.2.4. Synthesis of Poly(silane–pyrrolidone) Nano/Microparticles
2.2.5. Poly(silane–pyrrolidone) and PVP Thin Coatings on PE Films
2.3. Characterization of Silane–Pyrrolidone Nano/Microparticles
2.3.1. High-Resolution Scanning Electron Microscopy (HRSEM) and Energy-Dispersive X-ray Spectroscopy (EDS)
2.3.2. Transmission Electron Microscopy (TEM)
2.3.3. X-ray Photoelectron Spectroscopy (XPS)
2.4. Characterization of Poly(Silane–Pyrrolidone) Anti-Fog Thin Coating
2.4.1. Hot-Fog Test
2.4.2. Ultraviolet–Visible (UV-Vis) Spectroscopy
2.4.3. Contact Angles (CAs)
2.4.4. Fourier-Transform Infrared (FTIR) Spectroscopy
2.4.5. Atomic Force Microscopy (AFM)
2.4.6. Coating Durability
3. Results and Discussion
3.1. P(MPTES-VP) Nano/Microparticles
3.2. Microscopy (HRSEM, TEM, EDS, and XPS)
3.3. P(MPTES-VP) Anti-Fogging Durable Thin Coatings on PE Films
3.4. Hot-Fog Test
3.5. Ultraviolet–Visible Spectroscopy (UV-Vis)
3.6. Contact Angles (CAs)
3.7. Fourier-Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR/ATR)
3.8. Atomic Force Microscopy (AFM)
3.9. Durability of P(MPTES-VP) Coating
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M.; Dinh, D.K.; Abbas, Q.; Imran, M.; Sattar, H.; Ul Ahmad, A. Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces 2019, 2, 349–371. [Google Scholar] [CrossRef]
- Zhi, J.; Zhang, L.-Z. Durable Superhydrophobic Surfaces Made by Intensely Connecting a Bipolar Top Layer to the Substrate with a Middle Connecting Layer. Sci. Rep. 2017, 7, 9946. [Google Scholar] [CrossRef] [PubMed]
- Cech, V.; Knob, A.; Lasota, T.; Lukes, J.; Drzal, L.T. Surface Modification of Glass Fibers by Oxidized Plasma Coatings to Improve Interfacial Shear Strength in GF/Polyester Composites. Polym. Compos. 2019, 40, E186–E193. [Google Scholar] [CrossRef]
- Introzzi, L.; Fuentes-Alventosa, J.M.; Cozzolino, C.A.; Trabattoni, S.; Tavazzi, S.; Bianchi, C.L.; Schiraldi, A.; Piergiovanni, L.; Farris, S. “Wetting Enhancer” Pullulan Coating for Antifog Packaging Applications. ACS Appl. Mater. Interfaces 2012, 4, 3692–3700. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Patil, R.S.; John, J.; Patil, M. A Comprehensive Outlook of Scope within Exterior Automotive Plastic Substrates and Its Coatings. Coatings 2023, 13, 1569. [Google Scholar] [CrossRef]
- Mozetič, M. Surface Modification to Improve Properties of Materials. Materials 2019, 12, 441. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, J. A Novel Precursor-Derived One-Step Growth Approach to Fabrication of Highly Antireflective, Mechanically Robust and Self-Healing Nanoporous Silica Thin Films. J. Mater. Chem. C 2013, 1, 4655–4662. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of Titanium Surface Modification Techniques and Coatings for Antibacterial Applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Kan, L.; Shen, F.; Ling, H.; Wang, X. All-Biomass-Based Eco-Friendly Waterproof Coating for Paper-Based Green Packaging. Green Chem. 2022, 24, 7039–7048. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Malka, E.; Caspi, A.; Cohen, R.; Margel, S. Fabrication and Characterization of Hydrogen Peroxide and Thymol-Loaded PVA/PVP Hydrogel Coatings as a Novel Anti-Mold Surface for Hay Protection. Polymers 2022, 14, 5518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Sun, J.; Shen, J. Mechanically Stable Antireflection and Antifogging Coatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination. Langmuir 2008, 24, 10851–10857. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, B.; Iqbal, O.; Habumugisha, J.C.; Xia, Z.; Jiang, R.; Chen, W. Polyvinyl Alcohol (PVA) Based Super-Hydrophilic Anti-Fogging Layer Assisted by Plasma Spraying for Low Density Polyethylene (LDPE) Greenhouse Films. Progress Org. Coat. 2021, 159, 106412. [Google Scholar] [CrossRef]
- Ren, S.; Wang, L.; Yu, H.; Haroon, M.; Ullah, R.S.; Haq, F.; Khan, R.U.; Fahad, S. Recent Progress in Synthesis of Antifogging Agents and Their Application to Agricultural Films: A Review. J. Coat. Technol. Res. 2018, 15, 445–455. [Google Scholar] [CrossRef]
- Kanovsky, N.; Margel, S. Fabrication of Transparent Silica/PEG Smooth Thin Coatings on Polymeric Films for Antifogging Applications. ACS Omega 2022, 7, 20505–20514. [Google Scholar] [CrossRef]
- Choi, M.; Xiangde, L.; Park, J.; Choi, D.; Heo, J.; Chang, M.; Lee, C.; Hong, J. Superhydrophilic Coatings with Intricate Nanostructure Based on Biotic Materials for Antifogging and Antibiofouling Applications. Chem. Eng. J. 2017, 309, 463–470. [Google Scholar] [CrossRef]
- Chan, C.-M.; Ko, T.-M.; Hiraoka, H. Polymer Surface Modification by Plasmas and Photons. Surf. Sci. Rep. 1996, 24, 1–54. [Google Scholar] [CrossRef]
- Husain, M.S.B.; Gupta, A.; Alashwal, B.Y.; Sharma, S. Synthesis of PVA/PVP Based Hydrogel for Biomedical Applications: A Review. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 2388–2393. [Google Scholar] [CrossRef]
- Awasthi, R.; Manchanda, S.; Das, P.; Velu, V.; Malipeddi, H.; Pabreja, K.; Pinto, T.D.J.A.; Gupta, G.; Dua, K. 9-Poly(Vinylpyrrolidone). In Engineering of Biomaterials for Drug Delivery Systems; Parambath, A., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2018; pp. 255–272. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef]
- Gregorova, A.; Saha, N.; Kitano, T.; Saha, P. Hydrothermal Effect and Mechanical Stress Properties of Carboxymethylcellulose Based Hydrogel Food Packaging. Carbohydr. Polym. 2015, 117, 559–568. [Google Scholar] [CrossRef]
- Wang, H.; Yu, T.; Zhao, C.; Du, Q. Improvement of Hydrophilicity and Blood Compatibility on Polyethersulfone Membrane by Adding Polyvinylpyrrolidone. Fibers Polym. 2009, 10, 1–5. [Google Scholar] [CrossRef]
- Guo, H.; Xu, T.; Zhang, J.; Zhao, W.; Zhang, J.; Lin, C.; Zhang, L. A Multifunctional Anti-Fog, Antibacterial, and Self-Cleaning Surface Coating Based on Poly(NVP-Co-MA). Chem. Eng. J. 2018, 351, 409–417. [Google Scholar] [CrossRef]
- Graf, C.; Vossen, D.L.J.; Imhof, A.; van Blaaderen, A. A General Method to Coat Colloidal Particles with Silica. Langmuir 2003, 19, 6693–6700. [Google Scholar] [CrossRef]
- Pattanaik, M.; Bhaumik, S.K. Adsorption Behaviour of Polyvinyl Pyrrolidone on Oxide Surfaces. Mater. Lett. 2000, 44, 352–360. [Google Scholar] [CrossRef]
- Timin, A.; Rumyantsev, E.; Lanin, S.N.; Rychkova, S.A.; Guseynov, S.S.; Solomonov, A.V.; Antina, E.V. Preparation and Surface Properties of Mesoporous Silica Particles Modified with Poly(N-Vinyl-2-Pyrrolidone) as a Potential Adsorbent for Bilirubin Removal. Mater. Chem. Phys. 2014, 147, 673–683. [Google Scholar] [CrossRef]
- Durán, I.R.; Laroche, G. Water Drop-Surface Interactions as the Basis for the Design of Anti-Fogging Surfaces: Theory, Practice, and Applications Trends. Adv. Colloid Interface Sci. 2019, 263, 68–94. [Google Scholar] [CrossRef] [PubMed]
- Kanovsky, N.; Cohen, S.; Margel, S. In-Situ Design, Characterization and Use of Durable Superhydrophobic Thin Coatings Applied on Polymeric Films. Mater. Res. Bull. 2022, 146, 111598. [Google Scholar] [CrossRef]
- Chu, J.; Tian, G.; Feng, X. Recent Advances in Prevailing Antifogging Surfaces: Structures, Materials, Durability, and Beyond. Nanoscale 2023, 15, 11366–11402. [Google Scholar] [CrossRef] [PubMed]
- Bretler, S.; Kanovsky, N.; Iline-Vul, T.; Cohen, S.; Margel, S. In-Situ Thin Coating of Silica Micro/Nano-Particles on Polymeric Films and Their Anti-Fogging Application. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125444. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; et al. Re-Evaluation of Polyvinylpyrrolidone (E 1201) and Polyvinylpolypyrrolidone (E 1202) as Food Additives and Extension of Use of Polyvinylpyrrolidone (E 1201). EFSA J. 2020, 18, e06215. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Mounayer, N.; Iline-Vul, T.; Margel, S. Synthesis and Characterization of Durable Antifog Silane–Pyrrolidone Thin Coatings onto Polymeric Films. Molecules 2024, 29, 958. [Google Scholar] [CrossRef] [PubMed]
- Sason, E.; Kolitz-Domb, M.; Chill, J.H.; Margel, S. Engineering of Durable Antifog Thin Coatings on Plastic Films by UV-Curing of Proteinoid Prepolymers with PEG-Diacrylate Monomers. ACS Omega 2019, 4, 9352–9360. [Google Scholar] [CrossRef]
- Rickerby, D.S. A Review of the Methods for the Measurement of Coating-Substrate Adhesion. Surf. Coat. Technol. 1988, 36, 541–557. [Google Scholar] [CrossRef]
- Bogush, G.H.; Zukoski, C.F. Studies of the Kinetics of the Precipitation of Uniform Silica Particles through the Hydrolysis and Condensation of Silicon Alkoxides. J. Colloid Interface Sci. 1991, 142, 1–18. [Google Scholar] [CrossRef]
- Rahman, I.A.; Padavettan, V. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. J. Nanomater. 2012, 2012, 132424. [Google Scholar] [CrossRef]
- Synthetic Strategies for Nonporous Organosilica Nanoparticles from Organosilanes—Nanoscale (RSC Publishing). Available online: https://pubs.rsc.org/en/content/articlelanding/2023/nr/d3nr00791j/unauth (accessed on 27 June 2024).
- Launer, P.J.; Arkles, B. Infrared Analysis of Organosilicon Compounds: Spectra-structure correlation. In Silicon Compounds: Silane & Silicones; Gelest, Inc.: Morrisville, PA, USA, 2013; pp. 175–178. [Google Scholar]
- Rafizah, W.A.W.; Ismail, A.F. Effect of Carbon Molecular Sieve Sizing with Poly(Vinyl Pyrrolidone) K-15 on Carbon Molecular Sieve–Polysulfone Mixed Matrix Membrane. J. Membr. Sci. 2008, 307, 53–61. [Google Scholar] [CrossRef]
Film | Atomic Concentration (wt%) | |||
---|---|---|---|---|
Si 2 p | C 1 s | O 1 s | N 1 s | |
PE | - | 88.45 | 11.48 | 0.07 |
PE/P(MPTES-VP) | 2.76 | 71.07 | 20. 85 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mounayer, N.; Margel, S. Engineering of Silane–Pyrrolidone Nano/Microparticles and Anti-Fogging Thin Coatings. Polymers 2024, 16, 2013. https://doi.org/10.3390/polym16142013
Mounayer N, Margel S. Engineering of Silane–Pyrrolidone Nano/Microparticles and Anti-Fogging Thin Coatings. Polymers. 2024; 16(14):2013. https://doi.org/10.3390/polym16142013
Chicago/Turabian StyleMounayer, Natalie, and Shlomo Margel. 2024. "Engineering of Silane–Pyrrolidone Nano/Microparticles and Anti-Fogging Thin Coatings" Polymers 16, no. 14: 2013. https://doi.org/10.3390/polym16142013
APA StyleMounayer, N., & Margel, S. (2024). Engineering of Silane–Pyrrolidone Nano/Microparticles and Anti-Fogging Thin Coatings. Polymers, 16(14), 2013. https://doi.org/10.3390/polym16142013