Influence of High Strain Dynamic Loading on HEMA–DMAEMA Hydrogel Storage Modulus and Time Dependence
Abstract
:1. Introduction
Material, Testing Method, Strain Rate | Elastic Modulus (kPa) | Strain or Displacement Rate | Time | Reference |
---|---|---|---|---|
MAALG-8 (7.6% methacrylation) | 34.3 ± 9.2 | Constant compression strain rate @5%/s | 24 h | Jeon et al. 2009 [49] |
MAALG-14 (13.8% methacrylation) | 143.5 ± 4.8 | 24 h | ||
174.1 ± 14.9 | 24 h | |||
MAALG-25 (25.2% methacrylation), age study | 150.0 ± 7.9 | 7 days | ||
110.0 ± 5.5 | 14 days | |||
N = 3 for each of the sample sets reported | 30.0 ± 1.5 | 21 days | ||
Double cross-linked gelatin-GO @0, 0.1, 0.5, 1, 3, 5 mg/mL GO, N = 5 for each sample set reported. | ||||
GH0 | 23.0 ± 10.0 | Constant compression displacement = 1 mm/min | 6 days | Piao et al. 2018 [50] |
GH1 | 31.0 ± 12.0 | |||
GH5 | 31.0 ± 14.0 | |||
GH10 | 42.0 ± 9.0 | |||
GH30 | 62.0 ± 18.0 | |||
GH50 | 58.0 ± 11.0 | |||
SerMA-1 (MA mod. deg. = 0.61 mmol/g) * SerMA-2 (MA mod. deg. = 1.12 mmol/g) SerMA-3 (MA mod. deg. = 1.95 mmol/g) N = 5 for each of the sample sets reported. | 4.0 15.0 36.0 | Constant compression displacement = 1 mm/min | 45 days | Qi et al. 2018 [57] |
GelMA GelMA and pHEMA (8:2) N = 3 for each of the sample sets reported. | 6.53 155.49 | Constant compression displacement = 1 mm/min | Bektas et al. 2020 [51] |
Material, Testing Method, Strain Rate | Storage Modulus (MPa) | Loss Modulus (MPa) | Time | Reference |
---|---|---|---|---|
HEMA-DMAEMA | 2.23 | 0.47 | 72-h | This work, 2024 |
50% strain amplitude | 1.86 | 0.49 | 5-days | |
DMA—Oscillatory, Compression | 1.72 | 0.47 | 10-days | |
N = 8 for each of the sample sets reported. | 2.69 | 0.86 | 15-days | |
HEMA-DMAEMA | 2.43 | 0.46 | 72-h | This work, 2024 |
60% strain amplitude | 1.96 | 0.41 | 5-days | |
DMA—Oscillatory, Compression | 1.89 | 0.38 | 10-days | |
N = 12 for each of the sample sets reported. | 2.32 | 0.53 | 15-days | |
HEMA-DMAEMA | 1.51 | 0.26 | 72-h | This work, 2024 |
70% strain amplitude | 1.83 | 0.41 | 5-days | |
DMA—Oscillatory, Compression | 1.84 | 0.38 | 10-days | |
N = 10 for each of the sample sets reported. | 2.42 | 0.62 | 15-days | |
Material, Testing Method, Strain Rate | Storage Modulus (KPa) | Loss Modulus (MPa) | Time | Reference |
RSA—Oscillatory, Shear, 1% strain amplitude, 0.01–10 Hz, N = 3 samples for each type of hydrogel studied. | ||||
RLP-rich | 2.4 | 57.0 | - | Lau et al. 2020 [55] |
RLP-PEG_10 ** | 4.9 | 28.0 | - | |
RLP-PEG_25 ** | 5.0 | 64.0 | - | |
RLP-PEG_60 ** | 5.3 | 43.0 | - | |
PEG-rich | 2.1 | 160.0 | - | |
DMA—Oscillatory, Compression 2.5% strain, 0.05–1 Hz, N = 3 samples for each type of hydrogel studied | ||||
RLP-rich | 6.3 | 62.0 | - | Lau et al. 2020 [55] |
RLP-PEG_10 ** | 16.7 | 70.0 | - | |
RLP-PEG_25 ** | 16.2 | 65.0 | - | |
RLP-PEG_60 ** | 18.2 | 57.0 | - | |
PEG-rich | 22.9 | 96.0 | - | |
RSA—Oscillatory, Compression @33% strain amplitude, N = 5 for each of the sample sets reported. | ||||
SMH-1 | 18.0 | 14.0 | 45-days | Qi et al. 2018 [57] |
SMH-2 | 21.0 | 18.0 | 45-days | |
SMH-3 | 27.0 | 20.0 | 45-days | |
DMA—Oscillatory, Tensile 1% strain HEMA-co-AA ***. The number of samples prepared for each sample set was not provided. | Saunders et al. 2012 [53] | |||
2% wt. crosslinker & 0.05 M electrolyte concentration, 0.1 Hz | 685.0 | 8.0 | - | |
8% wt. crosslinker & 0.5 M electrolyte concentration, 10 Hz | 1830.0 | 430.0 | - |
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Dynamic Mechanical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chyzy, A.; Tomczykowa, M.; Plonska-Brzezinska, M.E. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. Materials 2020, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, K.X.; Kong, X.B.; Yin, J.B. Poly(l-glutamic acid)-based micellar hydrogel with improved mechanical performance and proteins loading. J. Polym. Sci. Pt. B-Polym. Phys. 2019, 57, 1115–1125. [Google Scholar] [CrossRef]
- Wei, Y.; Chang, Y.H.; Liu, C.J.; Chung, R.J. Integrated Oxidized-Hyaluronic Acid/Collagen Hydrogel with beta-TCP Using Proanthocyanidins as a Crosslinker for Drug Delivery. Pharmaceutics 2018, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Suhag, D.; Bhatia, R.; Das, S.; Shakeel, A.; Ghosh, A.; Singh, A.; Sinha, O.P.; Chakrabarti, S.; Mukherjee, M. Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv. 2015, 5, 53963–53972. [Google Scholar] [CrossRef]
- Sezgin, N.; Balkaya, N. Adsorption of heavy metals from industrial wastewater by using polyacrylic acid hydrogel. Desalin. Water Treat. 2016, 57, 2466–2480. [Google Scholar] [CrossRef]
- Tomic, S.L.; Micic, M.M.; Dobic, S.N.; Filipovic, J.M.; Suljovrujic, E.H. Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat. Phys. Chem. 2010, 79, 643–649. [Google Scholar] [CrossRef]
- Merritt, W.; Holter, A.M.; Beahm, S.; Gonzalez, C.; Becker, T.A.; Tabor, A.; Ducruet, A.F.; Bonsmann, L.S.; Cotter, T.R.; Frenklakh, S. Quantifying the mechanical and histological properties of thrombus analog made from human blood for the creation of synthetic thrombus for thrombectomy device testing. J. Neurointerv. Surg. 2018, 10, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.X.; Tian, T.C.; Yu, S.T.; Li, L. pH-sensitive hydrogel based on carboxymethyl chitosan/sodium alginate and its application for drug delivery. J. Appl. Polym. Sci. 2019, 136, 6. [Google Scholar] [CrossRef]
- Kocen, R.; Gasik, M.; Gantar, A.; Novak, S. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomed. Mater. 2017, 12, 11. [Google Scholar] [CrossRef]
- Hamid, Z.A.A.; Lim, K.W. Evaluation of UV-crosslinked Poly(ethylene glycol) Diacrylate/Poly(dimethylsiloxane) Dimethacrylate Hydrogel: Properties for Tissue Engineering Application. Procedia Chem. 2016, 19, 410–418. [Google Scholar] [CrossRef]
- Shihab, A.H.; Eliasy, A.; Lopes, B.T.; Wu, R.; White, L.; Jones, S.; Geraghty, B.; Joda, A.; Elsheikh, A.; Abass, A. Compressive behaviour of soft contact lenses and its effect on refractive power on the eye and handling off the eye. PLoS ONE 2021, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Varela-Garcia, A.; Gomez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C. Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs. Polymers 2020, 12, 2026. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.S.; Ding, J.; Chen, Y.; Shen, Q.Q. Study on mechanical and optical properties of poly(vinyl alcohol) hydrogel used as soft contact lens. Mater. Technol. 2016, 31, 266–273. [Google Scholar] [CrossRef]
- McCracken, J.M.; Rauzan, B.M.; Kjellman, J.C.E.; Kandel, M.E.; Liu, Y.H.; Badea, A.; Miller, L.A.; Rogers, S.A.; Popescu, G.; Nuzzo, R.G. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. Adv. Healthc. Mater. 2019, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.J.; Liu, Z.S. Phase Transition of Temperature-Sensitive Hydrogel under Mechanical Constraint. J. Appl. Mech.-Trans. ASME 2018, 85, 7. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Zhang, J.; Fang, Q.C.; Jiang, D.M.; Lin, C.C.; Zeng, Y.; Jiang, J.S. Salt and pH Sensitive Semi-Interpenetrating Polyelectrolyte Hydrogels Poly(HEMA-co-METAC)/PEG and Its BSA Adsorption Behavior. J. Appl. Polym. Sci. 2015, 132, 11. [Google Scholar] [CrossRef]
- Chuah, Y.J.; Peck, Y.; Lau, J.E.J.; Heec, H.T.; Wang, D.A. Hydrogel based cartilaginous tissue regeneration: Recent insights and technologies. Biomater. Sci. 2017, 5, 613–631. [Google Scholar] [CrossRef]
- Ambrosio, L.; De Santis, R.; Nicolais, L. Composite hydrogels for implants. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 1998, 212, 93–99. [Google Scholar] [CrossRef]
- Abraham, S.; Brahim, S.; Ishihara, K.; Guiseppi-Elie, A. Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 2005, 26, 4767–4778. [Google Scholar] [CrossRef]
- Jeyanthi, R.; Rao, K.P. In vivo biocompatibility of collagenpoly(hydroxyethyl methacrylate) hydrogels. Biomaterials 1990, 11, 238–243. [Google Scholar] [CrossRef]
- Chappard, D. 2-hydroxyethyl methacrylate (HEMA): Chemical properties and applications in biomedical fields. JMS Rev. Macromol Chem Phys. 1992, 32, 1–34. [Google Scholar]
- Olabisi, R.M. Cell microencapsulation with synthetic polymers. J. Biomed. Mater. Res. Part A 2015, 103, 846–859. [Google Scholar] [CrossRef] [PubMed]
- Vandenbergh, J.; Junkers, T.; Olabisi, O.; Adewale, K. Polyacrylates. In Handbook of Thermoplastics; CRC Press: Boca Raton, FL, USA, 2016; Volume 2. [Google Scholar]
- Omidian, H.; Park, K.; Kandalam, U.; Rocca, J.G. Swelling and mechanical properties of modified HEMA-based superporous hydrogels. J. Bioact. Compat. Polym. 2010, 25, 483–497. [Google Scholar] [CrossRef]
- Han, Y.A.; Lee, E.M.; Ji, B.C. Mechanical properties of semi-interpenetrating polymer network hydrogels based on poly(2-hydroxyethyl methacrylate) copolymer and chitosan. Fibers Polym. 2008, 9, 393–399. [Google Scholar] [CrossRef]
- Justin, G.; Guiseppi-Elie, A. Electroconductive blends of poly (HEMA-co-PEGMA-co-HMMAco-SPMA) and poly (Py-co-PyBA): In vitro biocompatibility. J. Bioact. Compat. Polym. 2010, 25, 121–140. [Google Scholar] [CrossRef]
- Ribeiro, P.M.B. Electro-Responsive Ionic Liquid-Based Hydrogels for Biomedical Applications. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2020. [Google Scholar]
- Kanaan, A.F.; Piedade, A.P.; de Sousa, H.C.; Dias, A.M. Semi-interpenetrating chitosan/ionic liquid polymer networks as electro-responsive biomaterials for potential wound dressings and iontophoretic applications. Mater. Sci. Eng. C 2021, 121, 111798. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, A.F.; Barsan, M.M.; Brett, C.M.; Alvarez-Lorenzo, C.; Concheiro, A.; de Sousa, H.C.; Dias, A.M. Sustainable electro-responsive semi-interpenetrating starch/ionic liquid copolymer networks for the controlled sorption/release of biomolecules. ACS Sustain. Chem. Eng. 2019, 7, 10516–10532. [Google Scholar] [CrossRef]
- Bhat, A.; Smith, B.; Dinu, C.-Z.; Guiseppi-Elie, A. Molecular engineering of poly (HEMA-co-PEGMA)-based hydrogels: Role of minor AEMA and DMAEMA inclusion. Mater. Sci. Eng. C 2019, 98, 89–100. [Google Scholar] [CrossRef]
- Yue, S.; Wu, J.; Zhang, Q.; Zhang, K.; Weir, M.D.; Imazato, S.; Bai, Y.; Xu, H.H. Novel dental adhesive resin with crack self-healing, antimicrobial and remineralization properties. J. Dent. 2018, 75, 48–57. [Google Scholar] [CrossRef]
- Faccia, P.A.; Amalvy, J.I. Synthesis, characterization, and swelling behavior of new pH-sensitive hydrogels derived from copolymers of 2-hydroxyethyl methacrylate and 2-(diisopropylamino) ethylmethacrylate. J. Appl. Polym. Sci. 2013, 127, 1974–1980. [Google Scholar] [CrossRef]
- Johnson, B.; Moorthy, J. Mechanical Properties of a pH Sensitive Hydrogel. In Proceedings of the 2002 Society for Experimental Mechanics (SEM) Annual Conference, Milwaukee, WI, USA, 10–12 June 2002. [Google Scholar]
- Schneider, G.B.; English, A.; Abraham, M.; Zaharias, R.; Stanford, C.; Keller, J. The effect of hydrogel charge density on cell attachment. Biomaterials 2004, 25, 3023–3028. [Google Scholar] [CrossRef]
- Desseaux, S.; Klok, H.-A. Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: Ligand co-presentation and 3D-localization. Biomaterials 2015, 44, 24–35. [Google Scholar] [CrossRef]
- Sadeghi, M. Synthesis and swelling behaviors of graftcopolymer based on chitosan-g-poly (AA-co-HEMA). Int. J. Chem. Eng. Appl. 2010, 1, 354. [Google Scholar] [CrossRef]
- Studenovská, H.; Šlouf, M.; Rypáček, F. Poly (HEMA) hydrogels with controlled pore architecture for tissue regeneration applications. J. Mater. Sci. Mater. Med. 2008, 19, 615–621. [Google Scholar] [CrossRef]
- Janoušková, O.; Přádný, M.; Vetrík, M.; Krumbholcová, E.C.; Michálek, J.; Smrčková, M.D. Biomimetic modification of dual porosity poly (2-hydroxyethyl methacrylate) hydrogel scaffolds—Porosity and stem cell growth evaluation. Biomed. Mater. 2019, 14, 055004. [Google Scholar] [CrossRef]
- Yang, J.Y.; Singh, D.; Singh, D.; Lee, E.M.; Choi, S.; Han, S.S.; Park, S.J. Terminalia bellirica extracts loaded on stimuli responsive HEMA-DEA hydrogel for enhanced growth and proliferation of mesenchymal stem cells. J. Biomater. Tissue Eng. 2014, 4, 37–45. [Google Scholar] [CrossRef]
- Kumar, D.; Gerges, I.; Tamplenizza, M.; Lenardi, C.; Forsyth, N.R.; Liu, Y. Three-dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a photocurable, biodegradable polymer hydrogel: A potential injectable cellular product for nucleus pulposus regeneration. Acta Biomater. 2014, 10, 3463–3474. [Google Scholar] [CrossRef]
- Rana, H.H.; Park, J.H.; Ducrot, E.; Park, H.; Kota, M.; Han, T.H.; Lee, J.Y.; Kim, J.; Kim, J.-H.; Howlett, P. Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Mater. 2019, 19, 197–205. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, R.; Pani, B.; Sarkar, A.; Tripathi, M. A Review on Engineering the Future with Hydrogels: Advancements in Energy Storage Devices and Biomedical Technologies. New J. Chem. 2024, 48, 10347–10369. [Google Scholar] [CrossRef]
- Prabhakaran, P.; Benjamin, C.C. Energy dissipation in pH-sensitive hydrogels subjected to large amplitude oscillatory shear. Mech. Mater. 2020, 140, 103226. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, H.; Xie, Y.; Jiang, Y.; Zhao, L.; Peng, W.; Wu, J.; Bao, J.; Liu, Y.; Wu, J. Mechanically robust, biocompatible, and durable PHEMA-based hydrogels enabled by the synergic effect of strong intermolecular interaction and suppressed phase separation. Polymer 2022, 254, 125083. [Google Scholar] [CrossRef]
- Moghadam, M.N.; Pioletti, D.P. Biodegradable HEMA-based hydrogels with enhanced mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1161–1169. [Google Scholar] [CrossRef]
- Meyvis, T.; De Smedt, S.; Demeester, J.; Hennink, W. Influence of the degradation mechanism of hydrogels on their elastic and swelling properties during degradation. Macromolecules 2000, 33, 4717–4725. [Google Scholar] [CrossRef]
- Anseth, K.S.; Bowman, C.N.; Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996, 17, 1647–1657. [Google Scholar] [CrossRef]
- Tong, Z.; Jin, L.; Oliveira, J.M.; Reis, R.L.; Zhong, Q.; Mao, Z.; Gao, C. Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact. Mater. 2021, 6, 1375–1387. [Google Scholar] [CrossRef]
- Jeon, O.; Bouhadir, K.H.; Mansour, J.M.; Alsberg, E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009, 30, 2724–2734. [Google Scholar] [CrossRef]
- Piao, Y.; Chen, B. Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels. Int. J. Biol. Macromol. 2017, 101, 791–798. [Google Scholar] [CrossRef]
- Bektas, C.K.; Hasirci, V. Cell Loaded GelMA:HEMA IPN hydrogels for corneal stroma engineering. J. Mater. Sci.-Mater. Med. 2019, 31, 2. [Google Scholar] [CrossRef]
- Bryant, S.J.; Chowdhury, T.T.; Lee, D.A.; Bader, D.L.; Anseth, K.S. Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Ann. Biomed. Eng. 2004, 32, 407–417. [Google Scholar] [CrossRef]
- Saunders, J.R.; Moussa, W. Dynamic mechanical properties and swelling of UV-photopolymerized anionic hydrogels. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1198–1208. [Google Scholar] [CrossRef]
- Chen, C.; Duan, N.; Chen, S.; Guo, Z.; Hu, J.; Guo, J.; Chen, Z.; Yang, L. Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds. J. Mol. Liq. 2020, 319, 114134. [Google Scholar] [CrossRef]
- Lau, H.K.; Rattan, S.; Fu, H.; Garcia, C.G.; Barber, D.M.; Kiick, K.L.; Crosby, A.J. Micromechanical Properties of Microstructured Elastomeric Hydrogels. Macromol. Biosci. 2020, 20, 1900360. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Benoit, D.S.W. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery. J. Control. Release 2018, 287, 58–66. [Google Scholar] [CrossRef]
- Qi, C.; Liu, J.; Jin, Y.; Xu, L.; Wang, G.; Wang, Z.; Wang, L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018, 163, 89–104. [Google Scholar] [CrossRef]
- Vedadghavami, A.; Minooei, F.; Mohammadi, M.H.; Khetani, S.; Kolahchi, A.R.; Mashayekhan, S.; Sanati-Nezhad, A. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 2017, 62, 42–63. [Google Scholar] [CrossRef]
- Dorishetty, P.; Dutta, N.K.; Choudhury, N.R. Bioprintable tough hydrogels for tissue engineering applications. Adv. Colloid Interface Sci. 2020, 281, 102163. [Google Scholar] [CrossRef]
- Şimşek, C.; Eroğlu, Z.E.; Erbil, C. Effect of ionomer/multiplet formation on mechanical properties and ascorbic acid release behavior of PNIPAAm hydrogels copolymerized by DMAEMA, DMAPMAAm and MAPTAC. Iran. Polym. J. 2019, 28, 977–990. [Google Scholar] [CrossRef]
- Orakdogen, N.; Celik, T. Ion-stimuli responsive dimethylaminoethyl methacrylate/hydroxyethyl methacrylate copolymeric hydrogels: Mutual influence of reaction parameters on the swelling and mechanical strength. J. Polym. Res. 2016, 23, 1–17. [Google Scholar] [CrossRef]
- Celik, T.; Orakdogen, N. Correlation between physicomechanical and swelling properties of weakly basic copolymer hydrogels based on (meth) acrylate polycations as new smart materials. Macromol. Chem. Phys. 2015, 216, 2190–2201. [Google Scholar] [CrossRef]
- Zhu, L.; Powell, S.; Boyes, S.G. Synthesis of tertiary amine-based pH-responsive polymers by RAFT Polymerization. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1010–1022. [Google Scholar] [CrossRef]
- Wang, B.; Xu, X.-D.; Wang, Z.-C.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X. Synthesis and properties of pH and temperature sensitive P (NIPAAm-co-DMAEMA) hydrogels. Colloids Surf. B Biointerfaces 2008, 64, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Lowe, A.B. Synthesis of di-and tri-tertiary amine containing methacrylic monomers and their (co) polymerization via RAFT. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 1877–1890. [Google Scholar] [CrossRef]
- ASTM D5024-23; Standard Test Method for Plastics: Dynamic Mechanical Properties: In Compression. ASTM International: West Conshohocken, PA, USA, 2023.
- Yuan, S.; Kirklin, S.; Dorney, B.; Liu, D.-J.; Yu, L. Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage. Macromolecules 2009, 42, 1554–1559. [Google Scholar] [CrossRef]
- Chen, D.T.N.; Wen, Q.; Janmey, P.A.; Crocker, J.C.; Yodh, A.G. Rheology of Soft Materials. Annu. Rev. Condens. Matter Phys. 2010, 1, 301–322. [Google Scholar] [CrossRef]
- Van Oosten, A.S.; Galie, P.A.; Janmey, P.A. Mechanical Properties of Hydrogels. Gels Handbook: Fundamentals, Properties and Applications (In 3 Volumes); World Scientific: Singapore, 2016; Volume 1. [Google Scholar]
- Cacopardo, L.; Guazzelli, N.; Nossa, R.; Mattei, G.; Ahluwalia, A. Engineering hydrogel viscoelasticity. J. Mech. Behav. Biomed. Mater. 2019, 89, 162–167. [Google Scholar] [CrossRef]
Test | Amplitude and Strain Rate | Frequency | Buffer Soln. |
---|---|---|---|
Type 1 | 50% Strain amplitude—0.25 mm/min Strain Rate | 1 Hz | No Buffer |
Type 2 | 50% Strain amplitude—0.25 mm/min Strain Rate | 1 Hz | 3pH Buffer |
Type 3 | 50% strain amplitude—0.25 mm/min Strain Rate | Frequency sweep from 1–100 Hz | No Buffer |
Type 4 | 50% strain amplitude—0.125 mm/min strain rate | 1 Hz | No buffer |
Type 5 | 60% strain amplitude—0.125 mm/min | 1 Hz | No buffer |
Type 6 | 70% strain amplitude—0.125 mm/min | 1 Hz | No buffer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook-Chennault, K.; Anaokar, S.; Medina Vázquez, A.M.; Chennault, M. Influence of High Strain Dynamic Loading on HEMA–DMAEMA Hydrogel Storage Modulus and Time Dependence. Polymers 2024, 16, 1797. https://doi.org/10.3390/polym16131797
Cook-Chennault K, Anaokar S, Medina Vázquez AM, Chennault M. Influence of High Strain Dynamic Loading on HEMA–DMAEMA Hydrogel Storage Modulus and Time Dependence. Polymers. 2024; 16(13):1797. https://doi.org/10.3390/polym16131797
Chicago/Turabian StyleCook-Chennault, Kimberly, Sharmad Anaokar, Alejandra M. Medina Vázquez, and Mizan Chennault. 2024. "Influence of High Strain Dynamic Loading on HEMA–DMAEMA Hydrogel Storage Modulus and Time Dependence" Polymers 16, no. 13: 1797. https://doi.org/10.3390/polym16131797
APA StyleCook-Chennault, K., Anaokar, S., Medina Vázquez, A. M., & Chennault, M. (2024). Influence of High Strain Dynamic Loading on HEMA–DMAEMA Hydrogel Storage Modulus and Time Dependence. Polymers, 16(13), 1797. https://doi.org/10.3390/polym16131797