Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results
3.1. Electrochemical Stability
3.2. Air Aging
3.3. Aging in Artificial Sweat Simultaneously with Electrochemical Loading
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vacca, A.; Mascia, M.; Rizzardini, S.; Corgiolu, S.; Palmas, S.; Demelas, M.; Bonfiglio, A.; Ricci, P.C. Preparation and characterisation of transparent and flexible PEDOT:PSS/PANI electrodes by ink-jet printing and electropolymerisation. RSC Adv. 2015, 5, 79600–79606. [Google Scholar] [CrossRef]
- Mousavi, H.; Ferrari, L.M.; Whiteley, A.; Ismailova, E. Kinetics and Physicochemical Characteristics of Electrodeposited PEDOT:PSS Thin Film Growth. Adv. Electron. Mater. 2023, 9, 2201282. [Google Scholar] [CrossRef]
- Donahue, M.J.; Sanchez-Sanchez, A.; Inal, S.; Qu, J.; Owens, R.M.; Mecerreyes, D.; Malliaras, G.G.; Martin, D.C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Rep. 2020, 140, 100546. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, A.; del Agua, I.; Malliaras, G.G.; Mecerreyes, D. Conductive Poly(3,4-Ethylenedioxythiophene) (PEDOT)-Based Polymers and Their Applications in Bioelectronics. In Smart Polymers and Their Applications, 2nd ed.; Aguilar, M.R., Román, J.S., Eds.; Woodhead: Sawston, UK, 2019; pp. 191–218. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, A.; Kaur, H. Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. Polym. Plast. Technol. Mater. 2021, 60, 504–521. [Google Scholar] [CrossRef]
- Lunghi, A.; Mariano, A.; Bianchi, M.; Dinger, N.B.; Murgia, M.; Rondanina, E.; Toma, A.; Greco, P.; Di Lauro, M.; Santoro, F.; et al. Flexible neural interfaces based on 3D PEDOT:PSS micropillar arrays. Adv. Mater. Interfaces 2022, 9, 2200709. [Google Scholar] [CrossRef]
- Sakthinathan, I.; Yamasaki, N.; Barreca, D.; Maccato, C.; Ueda, T.; McCormac, T. Wells-Dawson type polyoxometalate, [S2W18O62]4−-doped poly(3,4-ethylenedioxythiophene) films: Voltammetric behaviour and applications to selective bromate detection. Electrochim. Acta 2023, 462, 142689. [Google Scholar] [CrossRef]
- Tian, F.; Yu, J.; Wang, W.; Zhao, D.; Cao, J.; Zhao, Q.; Wang, F.; Yang, H.; Wu, Z.; Xu, J.; et al. Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes. J. Colloid Interface Sci. 2023, 638, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Hik, F.; Taatizadeh, E.; Takalloo, S.E.; Madden, J.D. Fast electrochemical response of PEDOT:PSS electrodes through large combined increases to ionic and electronic conductivities. Electrochim. Acta 2023, 468, 143136. [Google Scholar] [CrossRef]
- Seiti, M.; Giuri, A.; Corcione, C.E.; Ferraris, E. Advancements in tailoring PEDOT:PSS properties for bioelectronic applications: A comprehensive review. Biomater. Adv. 2023, 154, 213655. [Google Scholar] [CrossRef] [PubMed]
- Moniz, M.P.; Rafique, A.; Carmo, J.; Oliveira, J.P.; Marques, A.; Ferreira, I.M.M.; Baptista, A.C. Electrospray Deposition of PEDOT:PSS on Carbon Yarn Electrodes for Solid-State Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2023, 15, 30727–30741. [Google Scholar] [CrossRef]
- Castagnola, V.; Bayon, C.; Descamps, E.; Bergaud, C. Morphology and conductivity of PEDOT layers produced by different electrochemical routes. Synth. Met. 2014, 189, 7–16. [Google Scholar] [CrossRef]
- Saha, A.; Ohori, D.; Sasaki, T.; Itoh, K.; Oshima, R.; Samukawa, S. Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS. Nanomaterials 2024, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Jalili, R.; Wang, C.; Zheng, T.; Chao, Y.; Wallace, G.G. A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochim. Acta 2017, 235, 348–355. [Google Scholar] [CrossRef]
- Wustoni, S.; Saleh, A.; El-Demellawi, J.K.; Koklu, A.; Hama, A.; Druet, V.; Wehbe, N.; Zhang, Y.; Inal, S. MXene improves the stability and electrochemical performance of electropolymerized PEDOT films. APL Mater. 2020, 8, 121105. [Google Scholar] [CrossRef]
- Schander, A.; Teßmann, T.; Strokov, S.; Stemmann, H.; Kreiter, A.K.; Lang, W. In-vitro evaluation of the long-term stability of PEDOT:PSS coated microelectrodes for chronic recording and electrical stimulation of neurons. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 6174–6177. [Google Scholar] [CrossRef]
- Boehler, C.; Oberueber, F.; Schlabach, S.; Stieglitz, T.; Asplund, M. Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge. ACS Appl. Mater. Interfaces 2017, 9, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Wei, B.; Kuo, C.-c.; Pathak, S.; Farrell, B.; Martin, D.C. Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2). Sci. Adv. 2017, 3, e1600448. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Garabedian, N.; Burris, D.L.; Martin, D.C. Durability of Poly(3,4-ethylenedioxythiophene) (PEDOT) films on metallic substrates for bioelectronics and the dominant role of relative shear strength. J. Mech. Behav. Biomed. Mater. 2019, 100, 103376. [Google Scholar] [CrossRef]
- Inoue, A.; Yuk, H.; Lu, B.; Zhao, X. Strong adhesion of wet conducting polymers on diverse substrates. Sci. Adv. 2020, 6, eaay5394. [Google Scholar] [CrossRef] [PubMed]
- Koutsouras, D.A.; Gkoupidenis, P.; Stolz, C.; Subramanian, V.; Malliaras, G.G.; Martin, D.C. Impedance Spectroscopy of Spin-Cast and Electrochemically Deposited PEDOT:PSS Films on Microfabricated Electrodes with Various Areas. ChemElectroChem 2017, 4, 2321–2327. [Google Scholar] [CrossRef]
- Abdullayeva, N.; Sankir, M. Influence of Electrical and Ionic Conductivities of Organic Electronic Ion Pump on Acetylcholine Exchange Performance. Materials 2017, 10, 586. [Google Scholar] [CrossRef]
- Sriprachuabwong, C.; Karuwan, C.; Wisitsorrat, A.; Phokharatkul, D.; Lomas, T.; Sritongkhamb, P.; Tuantranont, A. Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 2012, 22, 5478–5485. [Google Scholar] [CrossRef]
- Boehler, C.; Carli, S.; Fadiga, L.; Stieglitz, T.; Asplund, M. Tutorial: Guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 2020, 15, 3557–3578. [Google Scholar] [CrossRef] [PubMed]
- Wahyuni, W.T.; Putra, B.R.; Rahman, H.A.; Anindya, W.; Hardi, J.; Rustami, E.; Ahmad, S.N. Electrochemical Sensors based on Gold–Silver Core–Shell Nanoparticles Combined with a Graphene/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Paraoxon-ethyl Detection. ACS Omega 2024, 9, 2896–2910. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Parvez, K.; Li, R.; Dong, R.; Feng, X.; Müllen, K. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv. Mater. 2014, 27, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Eawwiboonthanakit, N.; Jaafar, M.; Ahmad, Z.; Ohtake, N.; Lila, B. Fabrication of PEDOT: PSS/graphene conductive ink printed on flexible substrate. Solid State Phenomen. 2017, 264, 70–73. [Google Scholar] [CrossRef]
- Popov, V.I.; Kotin, I.A.; Nebogatikova, N.A.; Smagulova, S.A.; Antonova, I.V. Graphene-PEDOT:PSS Humidity Sensors for High Sensitive, Low-Cost, Highly-Reliable, Flexible, and Printed Electronics. Materials 2019, 12, 3477. [Google Scholar] [CrossRef] [PubMed]
- Faruk, O.; Adak, B. Recent advances in PEDOT:PSS integrated graphene and MXene-based composites for electrochemical supercapacitor applications. Synth. Met. 2023, 297, 117384. [Google Scholar] [CrossRef]
- Tzaneva, B.; Aleksandrova, M.; Mateev, V.; Stefanov, B.; Iliev, I. Electrochemical Properties of PEDOT:PSS/Graphene Conductive Layers in Artificial Sweat. Sensors 2024, 24, 39. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Yoo, D.; Lee, J.J.; Choi, H.H.; Kim, J.H. Enhanced power factor of poly (3,4-ethyldioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)/RTCVD graphene hybrid films. Org. Electron. 2016, 36, 166–170. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, J.; Kim, J.H. Direct synthesis of highly conductive poly (3,4-ethylenedioxythiophene):poly (4-styrenesulfonate)(PEDOT: PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730. [Google Scholar] [CrossRef]
- Curto, V.F.; Fay, C.; Coyle, S.; Byrne, R.; O’Toole, C.; Barry, C.; Hughes, S.; Moyna, N.; Diamond, D.; Benito-Lopez, F. Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens. Actuators B Chem. 2012, 171–172, 1327–1334. [Google Scholar] [CrossRef]
- Nasera, S.A.; Hameed, A.A.; Husseinc, M.A. Corrosion Behavior of Some Jewelries in Artificial Sweat. AIP Conf. Proc. 2020, 2213, 020030. [Google Scholar] [CrossRef]
- Vanhoestenberghe, A.; Donaldson, N. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J. Neural Eng. 2013, 10, 031002. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.M.; De Faria, L.A.; Boodts, J.F.C. Determination of the morphology factor of oxide layers. Electrochim. Acta 2001, 47, 395–403. [Google Scholar] [CrossRef]
- Pan, Q.; Wu, Q.; Sun, Q.; Zhou, X.; Cheng, L.; Zhang, S.; Yuan, Y.; Zhang, Z.; Ma, J.; Zhang, Y.; et al. Biomolecule-friendly conducting PEDOT interface for long-term bioelectronic devices. Sens. Actuators B Chem. 2022, 373, 132703. [Google Scholar] [CrossRef]
- Barron, S.L.; Oldroyd, S.V.; Saez, J.; Chernaik, A.; Guo, W.; McCaughan, F.; Bulmer, D.; Owens, R.M. A Conformable Organic Electronic Device for Monitoring Epithelial Integrity at the Air Liquid Interface. Adv. Mater. 2023, 36, 2306679. [Google Scholar] [CrossRef] [PubMed]
- Magar, H.S.; Hassan, R.Y.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Rubinson, J.F.; Kayinamura, Y.P. Charge transport in conducting polymers: Insights from impedance spectroscopy. Chem. Soc. Rev. 2009, 38, 3339–3347. [Google Scholar] [CrossRef] [PubMed]
- Hernández, H.H.; Reynoso, A.M.R.; González, J.C.T.; Morán, C.O.G.; Hernández, J.G.M.; Ruiz, A.M.; Hernández, J.M.; Cruz, R.O. Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. In Electrochemical Impedance Spectroscopy; El-Azazy, M., Min, M., Annus, P., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Patra, S.; Munichandraiah, N. Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate. J. Appl. Polym. Sci. 2007, 106, 1160–1171. [Google Scholar] [CrossRef]
- Guo, D.; Wang, L.; Wang, X.; Xiao, Y.; Wang, C.; Chen, L.; Ding, Y. PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator. Sens. Actuators B Chem. 2020, 305, 127488. [Google Scholar] [CrossRef]
- Peringath, A.R.; Bayan, M.A.H.; Beg, M.; Jain, A.; Pierini, F.; Gadegaard, N.; Hogg, R.; Manjakkal, L. Chemical synthesis of polyaniline and polythiophene electrodes with excellent performance in supercapacitors. J. Energy Storage 2023, 73, 108811. [Google Scholar] [CrossRef]
- Dobashi, Y.; Fannir, A.; Farajollahi, M.; Mahmoudzadeh, A.; Usgaocar, A.; Yao, D.; Nguyen, G.T.M.; Plesse, C.; Vidal, F.; Madden, J.D.W. Ion transport in polymer composites with non-uniform distributions of electronic conductors. Electrochim. Acta 2017, 247, 149–162. [Google Scholar] [CrossRef]
- Lefrou, C.; Fabry, P.; Poignet, J.C. Electrochemistry: The Basics, with Examples; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G. Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Comm. 2008, 10, 1555–1558. [Google Scholar] [CrossRef]
- Zhou, J.; Anjum, D.H.; Lubineau, G.; Li, E.Q.; Thoroddsen, S.T. Unraveling the order and disorder in poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) nanofilms. Macromolecules 2015, 48, 5688–5696. [Google Scholar] [CrossRef]
- Thaning, E.M.; Asplund, M.L.; Nyberg, T.A.; Inganäs, O.W.; von Holst, H. Stability of poly (3,4-ethylene dioxythiophene) materials intended for implants. J. Biomed. Mater. 2010, 93B, 407–415. [Google Scholar] [CrossRef]
Sample | fcut-off, kHz | Rs, Ω | Rct, Ω | Ri, MΩ | Qi, μS sn | n | Cdl, nF | χ2 |
---|---|---|---|---|---|---|---|---|
fresh | 2.53 ± 0.50 | 97.1 ± 3.2 | 100.6 ± 21.4 | 30.6 ± 5.2 | 1.16 ± 0.12 | 0.87 ± 0.03 | 257.6 ± 42.5 | 0.0005 ± 0.0002 |
after 500 cycles | 1.63 ± 0.11 | 100.1 ± 4.3 | 207.7 ± 45.9 | 36.7 ± 11.6 | 1.34 ± 0.18 | 0.83 ± 0.01 | 450.6 ± 60.1 | 0.0014 ± 0.0006 |
aged in air | 1.94 ± 0.59 | 120.4 ± 9.1 | 115.1 ± 33.7 | 40.6 ± 7.4 | 1.19 ± 0.22 | 0.86 ± 0.01 | 269.3 ± 34.3 | 0.0002 ± 0.0001 |
Soaking, Days | fcut-off | Rs | Rct | Ri | Qi, | ni | Qdl | ndl | χ2 |
---|---|---|---|---|---|---|---|---|---|
kHz | Ω | kΩ | MΩ | μS sn | nS sn | ||||
0 | 2.34 | 97.10 | 0.101 | 30.60 | 1.160 | 0.870 | 257.6 | 1.00 | 0.0005 |
1 | 2.57 | 231.5 | 1.522 | 65.03 | 0.448 | 0.875 | 236.0 | 0.96 | 0.0023 |
2 | 5.89 | 1885 | 967.0 | 329.5 | 0.053 | 0.646 | 38.03 | 0.87 | 0.0124 |
3 | 4.17 | 3165 | 648.7 | 791.9 | 0.082 | 0.649 | 0.049 | 0.81 | 0.0045 |
4 | 2.19 | 5604 | 922.5 | 1271 | 0.101 | 0.671 | 0.056 | 0.77 | 0.0051 |
7 | 2.40 | 5222 | 1077 | 4.01 × 1012 | 0.052 | 0.843 | 0.153 | 0.64 | 0.0026 |
8 | 1.35 | 5160 | 547.0 | 5.469 × 1015 | 0.093 | 0.894 | 0.188 | 0.64 | 0.0037 |
9 | 0.76 | 4668 | 220.0 | 1.89 × 1015 | 0.121 | 0.801 | 0.209 | 0.67 | 0.0029 |
Soaking, Days | E, V | j0, nA cm−2 | Rp, MΩ | Cathodic Tafel, V dec−1 | Anodic Tafel, V dec−1 |
---|---|---|---|---|---|
0 | 0.055 | 21.11 | 146.2 | 0.154 | 0.132 |
1 | 0.071 | 3.38 | 106.6 | 0.179 | 0.155 |
2 | 0.082 | 2.21 | 189.2 | 0.252 | 0.156 |
3 | 0.081 | 3.42 | 149.6 | 0.290 | 0.198 |
4 | 0.078 | 3.66 | 121.5 | 0.308 | 0.153 |
7 | 0.041 | 3.38 | 114.5 | 0.212 | 0.154 |
8 | 0.024 | 3.65 | 88.04 | 0.171 | 0.131 |
9 | −0.001 | 3.85 | 75.33 | 0.162 | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzaneva, B.; Mateev, V.; Stefanov, B.; Aleksandrova, M.; Iliev, I. Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat. Polymers 2024, 16, 1706. https://doi.org/10.3390/polym16121706
Tzaneva B, Mateev V, Stefanov B, Aleksandrova M, Iliev I. Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat. Polymers. 2024; 16(12):1706. https://doi.org/10.3390/polym16121706
Chicago/Turabian StyleTzaneva, Boriana, Valentin Mateev, Bozhidar Stefanov, Mariya Aleksandrova, and Ivo Iliev. 2024. "Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat" Polymers 16, no. 12: 1706. https://doi.org/10.3390/polym16121706
APA StyleTzaneva, B., Mateev, V., Stefanov, B., Aleksandrova, M., & Iliev, I. (2024). Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat. Polymers, 16(12), 1706. https://doi.org/10.3390/polym16121706