Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow
Abstract
:1. Introduction
2. Alder Species
2.1. Potential of Alder in Terms of Its Suitability for Chipping and Fragmentation into Fine Particles
2.2. Alder in Particleboard and the Context of Its Processing
2.2.1. Previous Experience of Particleboard Production from Alder Wood
2.2.2. Analysis of the Chemical Composition of Alder Wood as a Factor in Particleboard Production
2.2.3. Investigations of Alder Wood Particle Storage Methods
2.2.4. Consequences of the Thermal Treatment of Alder Wood for Particleboard Production
2.2.5. Comparisons of Selected Alder Wood Resources from Various Stem Parts for Particleboard Production
2.2.6. Possibilities of Chemical Modifications of Alder Wood for the Purpose of Improving the Quality of Particleboard Production
2.2.7. Use of Alder Wood for the Production of Other Types of Wood Composites and Other Context
2.2.8. Overall Evaluation of the Context of Alder Wood’s Possibilities in Particleboard Production
3. Birch Species
3.1. Potential of Birch in Terms of Its Suitability for Chipping and Fragmentation into Fine Particles
3.2. Birch in Particleboard and the Context of Its Processing
3.2.1. Previous Experience of Particleboard Production from Birch Wood
3.2.2. Possibilities of Particleboard Production from Birch Wood and Alternative Adhesives
3.2.3. Use of Birch Wood for the Production of Other Types of Wood Composites
3.2.4. Other Birch Biomass for Particleboard Production
3.2.5. Overall Evaluation of the Context of Birch Wood’s Possibilities in Particleboard Production
4. Larch Species
4.1. Potential of Larch in Terms of its Suitability for Chipping and Fragmentation into Fine Particles
4.2. Larch in Particleboard and the Context of Its Processing
4.2.1. Previous Experience of Particleboard Production from Larch Wood
4.2.2. Inorganic Adhesives Used for the Particleboard Production from Larch
4.2.3. Analysis of Chemical Composition of Larch Wood and Bark as a Factor in Particleboard Production
4.2.4. Overall Evaluation of the Context of Larch Wood’s Possibilities in Particleboard Production
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://www.mordorintelligence.com/industry-reports/particle-board-market (accessed on 1 June 2023).
- Available online: https://www.researchandmarkets.com/report/particle-board (accessed on 1 June 2023).
- Available online: https://www.indexbox.io/blog/global-particle-board-market-2019-key-insights/ (accessed on 1 June 2023).
- Available online: https://www.reportsanddata.com/report-detail/particle-board-market (accessed on 1 June 2023).
- Barbu, M.C.; Irle, M.; Reh, R. Wood Based Composites, Chapter 1. In Research Developments in Wood Engineering and Technology; Engineering Science Reference; Aguilera, A., Davim, P., Eds.; IGI Global: Hershey, PA, USA, 2014; pp. 1–45. ISBN 978-1-4666-4554-7. [Google Scholar]
- Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/particleboards (accessed on 1 June 2023).
- Niemz, P.; Sandberg, D. Critical wood-particle properties in the production of particleboard. Wood Mater. Sci. Eng. 2022, 17, 386–387. [Google Scholar] [CrossRef]
- Kamke, F.A. Solid wood products/Wood-based composites and panel products. In Encyclopedia of Forest Sciences; Burley, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1338–1345. ISBN 9780121451608. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade (accessed on 1 June 2023).
- Youngquist, J.A. Wood-based composites and panel products. In Wood Handbook: Wood as an Engineering Material; General Technical Report; FPL–GTR:113; Forest Product Laboratory: Madison, WI, USA, 1999; Chapter 10. [Google Scholar]
- Irle, M.A.; Barbu, M.C.; Reh, R.; Bergland, L.; Rowell, R.M. Wood composites. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2012; pp. 321–411. ISBN 978-1-4398-5380-1. [Google Scholar]
- Bentsen, N.S.; Felby, C.; Thorsen, B.J. Agricultural residue production and potentials for energy and materials services. Prog. Energy Combust. Sci. 2014, 40, 59–73. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative lignocellulosic raw materials in particleboard production: A review. Ind. Crops Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Mahieu, A.; Vivet, A.; Poilane, C.; Leblanc, N. Performance of particleboards based on annual plant byproducts bound with bio-adhesives. Int. J. Adhes. Adhes. 2021, 107, 102847. [Google Scholar] [CrossRef]
- Barbu, M.C.; Reh, R.; Çavdar, A.D. Non-wood lignocellulosic composites, Chapter 8. In Research Developments in Wood Engineering and Technology; Aguilera, A., Davim, P., Eds.; Engineering Science Reference; IGI Global: Hershey, PA, USA, 2014; pp. 281–319. ISBN 978-1-4666-4554-7. [Google Scholar]
- Available online: https://8billiontrees.com/trees/how-many-trees-are-in-the-world/ (accessed on 1 June 2023).
- Available online: https://www.forestportal.sk/odborna-sekcia-i/informacie-o-lesoch/zakladne-informacie-o-lesoch/rozdelenie-lesov/ (accessed on 10 March 2024).
- Available online: http://www.czechforest.cz/informace-o-lesich#:~:text=Dle%20v%C3%BDsledk%C5%AF%20N%C3%A1rodn%C3%AD%20inventarizace%20les%C5%AF%20p%C5%99eva%C5%BEuj%C3%AD%20v%20%C4%8CR%3A,nejv%C3%ADce%20zastoupen%C3%BDm%20jehli%C4%8Dnanem%20je%20smrk%20ztepil%C3%BD%20%2843%2C1%20%25%29 (accessed on 10 March 2024).
- Available online: https://www.globalforestwatch.org/dashboards/country/AUT/?category=forest-change&location=WyJjb3VudHJ5IiwiQVVUIl0%3D (accessed on 10 March 2024).
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade#Wood-based_industries (accessed on 10 March 2024).
- Available online: https://jwoodscience.springeropen.com/articles/10.1007/s10086-015-1534-3 (accessed on 10 March 2024).
- Available online: https://academic.oup.com/forestry/article/83/1/103/546795 (accessed on 10 March 2024).
- Available online: https://treepursuits.com/where-do-birch-trees-grow-map/?utm_content=cmp-true (accessed on 10 March 2024).
- Available online: https://openknowledge.fao.org/server/api/core/bitstreams/d27d7ec2-fa9e-46b3-a0e7-529bbc424f6a/content (accessed on 10 March 2024).
- Available online: https://www.gotreequotes.com/how-many-trees-in-world/ (accessed on 1 June 2023).
- Available online: https://worldpopulationreview.com/geography/how-many-trees-are-in-the-world (accessed on 1 June 2023).
- Auer, V.; Rauch, P. Wood supply chain risks and risk mitigation strategies: A systematic review focusing on the Northern hemisphere. Biomass Bioenergy 2021, 148, 106001. [Google Scholar] [CrossRef]
- Klement, I.; Reh, R.; Detvaj, J. Základné Charakteristiky Lesných Drevín—Spracovanie Drevnej Suroviny V Odvetví Spracovania Dreva; NLC: Zvolen, Slovakia, 2010; 80p, ISBN 978-80-8093-112-4. [Google Scholar]
- Available online: https://www.wood-database.com/european-alder/ (accessed on 5 June 2023).
- Balabán, K. Nauka o Dřevě. 1.Část, Anatomie Dřeva; D-01278; Lesnická knihovna; Státní zemědělské nakladatelství: Praha, Czech Republic, 1955; Volume 16, 216p. [Google Scholar]
- Perelygin, L.M. Náuka o Dreve; DT 674.02; Slovenské vydavate’stvo technickej literatúry: Bratislava, Slovakia, 1965; 444p. [Google Scholar]
- Available online: https://www.woodlandtrust.org.uk/trees-woods-and-wildlife/british-trees/a-z-of-british-trees/alder/ (accessed on 5 June 2023).
- Coombes, A.J. Trees; Dorling Kindersley: New York, NY, USA, 1992; 320p, ISBN 10: 0863188125. [Google Scholar]
- Kremer, B.P. Bäume: Heimische und eingeführte Arten Europas; Genehmigte Sonderausgabe; Mosaik Verlag: München, Germany, 2000; ISBN 3-572-01086-1. [Google Scholar]
- Available online: https://www.hardwoodinfo.com/specifying-professionals/species-guide/species-guide-a-g/alder/ (accessed on 5 June 2023).
- Požgaj, A.; Chovanec, D.; Kurjatko, S.; Babiak, M. Štruktúra a Vlastnosti Dreva; Príroda: Bratislava, Slovakia, 1993; 485p, ISBN 80-07-00600-1. [Google Scholar]
- Nečesaný, V. Stavba dřeva. In Dřevařská Příručka I; SNTL—Nakladatelství technické literatury: Praha, Czech Republic, 1989; pp. 11–28. ISBN 80-03-00009-2. [Google Scholar]
- Forest Products Laboratory. Wood handbook. In Wood as an Engineering Material; General Technical Report FPL-GTR-282; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021; 543p. [Google Scholar]
- Nemlį, G. Effects of Some Manufacturing Factors on the Properties of Particleboard Manufactured from Alder (Alnus glutinosa subsp. Barbata). Turk. J. Agric. For. 2003, 27, 6. Available online: https://journals.tubitak.gov.tr/agriculture/vol27/iss2/6 (accessed on 1 June 2023).
- Tupciauskas, R.; Veveris, A.; Andzs, M.; Gravits, J.; Liitia, T.; Tamminen, T. Investigation of a Grey Alder Particleboard Bonded by Different Industrial Side-Stream Lignins. Mech. Compos. Mater 2021, 57, 57–68. [Google Scholar] [CrossRef]
- Kumaş, İ.; Aras, U.; Kalaycioğlu, H.; Serdar, B.; Yel, H. Effect of growing altitude, particle drying temperature and press temperature on some technological properties of particleboard produced from black alder wood. Drewno. Pr. Naukowe. Doniesienia. Komun. 2021, 64, 59–71. [Google Scholar] [CrossRef]
- Geffert, A.; Geffertová, J.; Dudiak, M.; Výbohová, E. Influence of steaming temperature on chemical characteristics and colour of alder wood. In Chip and Chipless Woodworking Processes; Technical University in Zvolen: Zvolen, Slovakia, 2020; Volume 12, pp. 49–56. ISSN 2453-904X. [Google Scholar]
- Janceva, S.; Andersone, A.; Spulle, U.; Tupciauskas, R.; Papadopoulou, E.; Bikovens, O.; Andzs, M.; Zaharova, N.; Rieksts, G.; Telysheva, G.; et al. Eco-friendly adhesives based on the oligomeric condensed tannins-rich extract from alder bark for particleboard and plywood production. Materials 2022, 15, 3894. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, H.; Demir, A.; Demirkir, C. Prediction of Optimum Expanded Polystyrene Densities for Best Thermal Insulation Performances of Polystyrene Composite Particleboards by Using Artificial Neural Network. Drv. Ind. 2022, 73, 385–395. [Google Scholar] [CrossRef]
- Öztürk, H.; Çolakoğlu, G.; Demirkir, C. Effect of drying types and polystyrene density on thermal conductivity of polystyrene composite particleboard. Wood Ind. Eng. 2019, 1, 57–62. [Google Scholar]
- Szadkowska, D.; Auriga, R.; Lesiak, A.; Szadkowski, J.; Marchwicka, M. Influence of Pine and Alder Woodchips Storage Method on the Chemical Composition and Sugar Yield in Liquid Biofuel Production. Polymers 2022, 14, 3495. [Google Scholar] [CrossRef]
- Lee, S.H.; Zaidon, A.; Rasdianah, D.; Lum, W.C.; Aisyah, H.A. Alteration in colour and fungal resistance of thermally treated oil palm trunk and rubberwood particleboard using palm oil. J. Oil Palm. Res. 2020, 32, 83–89. [Google Scholar]
- Christy, E.O.; Sumarlan, S.H.; Soehardjono, A. Binderless Bark Particleboard Made from Gelam (Melaleuca viridiflora Sol. ex Gaertn.) Bark Waste: The Effect of the Pressing Temperature on Its Mechanical and Physical Properties. BioResources 2021, 16, 4171. [Google Scholar] [CrossRef]
- Dukarska, D.; Pędzik, M.; Rogozińska, W.; Rogoziński, T.; Czarnecki, R. Characteristics of straw particles of selected grain species purposed for the production of lignocellulose particleboards. Part. Sci. Technol. 2021, 39, 213–222. [Google Scholar] [CrossRef]
- Salca, E.A. Black alder (Alnus glutinosa L.)—A resource for value-added products in furniture industry under European screening. Curr. For. Rep. 2019, 5, 41–54. [Google Scholar] [CrossRef]
- Torun, S.B.; Cavdar, A.D.; Ozdemir, T. The synergistic effect of intumescent coating containing titanium dioxide and antimony trioxide onto spruce and alder wood species. J. Build. Eng. 2020, 31, 101407. [Google Scholar] [CrossRef]
- Lovaglio, T.; Gindl-Altmutter, W.; Meints, T.; Moretti, N.; Todaro, L. Wetting behavior of alder (Alnus cordata (Loisel) Duby) wood Surface: Effect of thermo-treatment and alkyl ketene dimer (AKD). Forests 2019, 10, 770. [Google Scholar] [CrossRef]
- Bekhta, P.; Pipíška, T.; Gryc, V.; Sedliačik, J.; Král, P.; Ráheľ, J.; Vaněrek, J. Properties of Plywood Panels Composed of Thermally Densified and Non-Densified Alder and Birch Veneers. Forests 2023, 14, 96. [Google Scholar] [CrossRef]
- Bekhta, P.; Krystofiak, T. Performance and Modification of Wood and Wood-Based Materials. Forests 2023, 14, 963. [Google Scholar] [CrossRef]
- Öncel, M.; Vurdu, H.; Aydoğan, H.; Özkan, O.E.; Kaymakci, A. The tensile shear strength of outdoor type plywood produced from fir, alnus, pine and poplar wood. Wood Res. 2019, 64, 913–920. [Google Scholar]
- İlkay, A.T.A.R.; Mengeloğ, F. The effect of ply combination on mechanical and physical properties in laminated veneer lumber (LVL) manufactured from alder and poplar. Turk. J. For. Sci. 2022, 6, 412–426. [Google Scholar]
- Romanenko, M. Influence of Pressing Temperature on Wood Properties. Mater. Res. Proc. 2022, 21, 32. [Google Scholar] [CrossRef]
- Pędzik, M.; Stuper-Szablewska, K.; Sydor, M.; Rogoziński, T. Influence of grit size and wood species on the granularity of dust particles during sanding. Appl. Sci. 2020, 10, 8165. [Google Scholar] [CrossRef]
- Sydor, M.; Mirski, R.; Stuper-Szablewska, K.; Rogoziński, T. Efficiency of Machine Sanding of Wood. Appl. Sci. 2021, 11, 2860. [Google Scholar] [CrossRef]
- Qiu, T.; Zhang, X.; Lu, S.; Zhang, G.; Hou, L. Characterization of combustion behavior of commercial flame-retardant plywoods in fire propagation apparatus. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 983, p. 012046. [Google Scholar]
- Sedliačiková, M.; Moresová, M.; Aláč, P.; Malá, D. What is the supply and demand for coloured wood products? An empirical study in Slovakian practice. Forests 2021, 12, 530. [Google Scholar] [CrossRef]
- Available online: https://www.wood-database.com/yellow-birch/ (accessed on 23 April 2024).
- Available online: https://www.woodlandtrust.org.uk/trees-woods-and-wildlife/british-trees/a-z-of-british-trees/downy-birch/ (accessed on 23 April 2024).
- Available online: https://www.hardwoodinfo.com/specifying-professionals/species-guide/species-guide-a-g/birch/ (accessed on 23 April 2024).
- Kollmann, F.F.P.; Kuenzi, E.W.; Stamm, A.J. Principles of Wood Science and Technology. Vol. 2. Wood Based Materials; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1975; 703p, ISBN 3-540-06467-2. [Google Scholar]
- Maloney, T.M. Modern Particleboard and Dry-Process Fiberboard Manufacturing; Miller Freeman publications: San Francisco, CA, USA, 1977; 669p, ISBN 0-87930-063-9. [Google Scholar]
- Varis, R. Wood-Based Panels Industry; Kirjakkari, O., Ed.; Technical University: Zvolen, Slovakia, 2018; 276p, ISBN 978-952-68627-1. [Google Scholar]
- Reh, R. Wood-Based Particle and Fiber Panel Products; Technical University in Zvolen: Zvolen, Slovakia, 2013; 135p, ISBN 978-80-228-2498-9. [Google Scholar]
- Liiri, O. Tutkimuksia lastulevyteollisuuden puuraaka-aineista I. Suomalaiset puulajit lastulevyn raaka-aineina. Investigations on the wood used as a raw material in the particle-board industry. I. Finnish tree species as a raw material for particle board. Pap. Ja Puu 1960, 42, 467–484. [Google Scholar]
- Baharoğlu, M.; Nemli, G.; Sarı, B.; Birtürk, T.; Bardak, S. Effects of anatomical and chemical properties of wood on the quality of particleboard. Compos. Part B Eng. 2013, 52, 282–285. [Google Scholar] [CrossRef]
- Krug, D.; Direske, M.; Tobisch, S.; Weber, A.; Wenderdel, C. Particle-Based Materials. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer Handbooks; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Çamlıbel, O.; Aydın, M. The effects of continuous press speed and conditioning time on the particleboard properties at industrial scale. BioResources 2022, 17, 159–176. [Google Scholar] [CrossRef]
- Skurydin, Y.G.; Skurydina, E.M. Digital differential spectrometry in the assessment of the structural characteristics of wood and wooden composite materials. IOP Conf. Ser. Earth Environ. Sci. 2021, 806, 012030. [Google Scholar] [CrossRef]
- Singh, N.; Rana, A.; Badhotiya, G.K. Raw material particle terminologies for development of engineered wood. Mater. Today Proc. 2021, 46, 11243–11246. [Google Scholar] [CrossRef]
- Razinkov, E.M.; Ishchenko, T.L. Analysis of low requirement justification of the current standard for the strength of wood particle boards. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 875, p. 012068. [Google Scholar] [CrossRef]
- Tupciauskas, R.; Rizhikovs, J.; Grinins, J.; Paze, A.; Andzs, M.; Brazdausks, P.; Puke, M.; Plavniece, A. Investigation of suberinic acids-bonded particleboard. Eur. Polym. J. 2019, 113, 176–182. [Google Scholar] [CrossRef]
- Jeżo, A.; Wronka, A. Post-extraction birch bark residues as a potential binder in particleboards. Annals of Warsaw University of Life Sciences—SGGW. For. Wood Technol. 2022, 118, 35–47. [Google Scholar] [CrossRef]
- EN 312: 2010. Available online: https://standards.iteh.ai/catalog/standards/cen/310c1aaa-c5c9-4e5d-ad3d-a255c265da52/en-312-2010 (accessed on 10 March 2024).
- Makars, R.; Godiņa, D.; Rizhikovs, J.; Paze, A.; Tupciauskas, R.; Berzins, R. Investigation of Furfural Formation and Mechanical Properties of Suberinic Acids-Bonded Particleboards Depending on their Preparation Parameters. KEM 2021, 903, 235–240. [Google Scholar] [CrossRef]
- Makars, R.; Rizikovs, J.; Godina, D.; Paze, A.; Merijs-Meri, R. Utilization of Suberinic Acids Containing Residue as an Adhesive for Particle Boards. Polymers 2022, 14, 2304. [Google Scholar] [CrossRef]
- Tupciauskas, R.; Meile, K.; Godina, D.; Rizhikovs, J.; Syrpas, M.; Venskutonis, P.R. Qualitative Differences and Emission Persistence of Volatile Organic Compounds from Bio-Based Particleboards. Materials 2022, 15, 5278. [Google Scholar] [CrossRef]
- Dudík, R.; Borůvka, V.; Zeidler, A.; Holeček, T.; Riedl, M. Influence of Site Conditions and Quality of Birch Wood on Its Properties and Utilization after Heat Treatment. Part II—Surface Properties and Marketing Evaluation of the Effect of the Treatment on Final Usage of Such Wood. Forests 2020, 11, 556. [Google Scholar] [CrossRef]
- Kowaluk, G.; Jeżo, A. Compression strength-focused properties of wood composites induced by structure. Annals of Warsaw University of Life Sciences—SGGW. For. Wood Technol. 2021, 131–140. [Google Scholar]
- Dumitrascu, A.E.; Lunguleasa, A.; Salca, E.A.; Ciobanu, V.D. Evaluation of selected properties of oriented strand boards made from fast growing wood species. BioResources 2020, 15, 199–210. [Google Scholar] [CrossRef]
- Xu, W. Horizontal Density Distribution of Particleboard: Origin and Implications; University of British Columbia: Vancouver, BC, Canada, 1994; Available online: https://open.library.ubc.ca/collections/ubctheses/831/items/1.0088293 (accessed on 10 March 2024).
- Carre, J. Use of forest biomass for the manufacture of particleboard. Bull. Rech. Agron. Bemloux. 1978, 13, 287–309. [Google Scholar]
- Pedieu, R.; Riedl, B.; Pichette, A. Properties of white birch (Betula papyrifera) outer bark particleboards with reinforcement of coarse wood particles in the core layer. Ann. For. Sci. 2008, 65, 701. [Google Scholar] [CrossRef]
- Available online: https://www.wood-database.com/european-larch/ (accessed on 23 April 2024).
- Available online: https://www.woodlandtrust.org.uk/trees-woods-and-wildlife/british-trees/a-z-of-british-trees/european-larch/ (accessed on 23 April 2024).
- Available online: https://leafyplace.com/larch-trees/ (accessed on 23 April 2024).
- Ragan, B.; Kačíková, D.; Paul’uro, M. Influence of physical and chemical characteristics of selected tree species on mass loss and rate of burning after exposure to radiant heating. Acta Fac. Xylologiae Zvolen 2016, 58, 121–131. [Google Scholar] [CrossRef]
- Chauzov, K.; Varankina, G.; Tambi, A. Investigation on gluing larch wood by modified glue. In 9th International Scientific Conference on Production Engineering Development and Modernization of Production; Tehnički fakultet Bihač: Bosna i Herzegovina, 2013; Available online: https://api.semanticscholar.org/CorpusID:208221259 (accessed on 10 March 2024).
- Pazio, B.; Boruszewski, P. Analysis of the influence of larch fibers and particles on selected properties of fiber- and particleboards. Annals of WULS—SGGW. For. Wood Technol. 2020, 111, 43–52. [Google Scholar] [CrossRef]
- Muhcu, S.; Nemli, G.; Ayrilmis, N.; Bardak, S.; Baharoğlu, M.; Sarı, B.; Gerçek, Z. Effect of log position in European Larch (Larix decidua Mill.) tree on the technological properties of particleboard. Scand. J. For. Res. 2015, 30, 357–362. [Google Scholar] [CrossRef]
- Bardak, S.; Nemli, G.; Bardak, T. The quality comparison of particleboards produced from heartwood and sapwood of European larch. Maderas. Cienc. Y Tecnol. 2019, 21, 4. [Google Scholar] [CrossRef]
- Lee, P.W.; Chung, G. Effect of press time and temperature on the physical properties of larch particle board. J. Korean For. Soc. 1984, 12–20. [Google Scholar]
- Matsumoto, A.; Nishikawa, K.; Anazawa, T.; Nunomura, A. Effects of the flake size on the properties of particle boards [from larch]. J. Hokkaido For. Prod. Res. Inst. 1982. [Google Scholar]
- Dix, B.; Roffael, E. Mechanical and technological properties of particleboards made of larch sapwood and heartwood. Holz Als Roh-Und. Werkst. 1994. [Google Scholar]
- Shupe, T.F.; Hse, C.Y.; Choong, E.T.; Groom, L.H. Effect of Silvicultural Practice and Wood Type on Loblolly Pine Particleboard and Medium Density Fiberboard Properties. Holzforsch. Gruyter 1999, 53, 215–222. [Google Scholar] [CrossRef]
- Simatupang, M.H.; Lange, H.; Neubauer, A. Einfluß der Lagerung von Pappel, Birke, Eiche und Lärche sowie des Zusatzes von SiO2-Feinstaub auf die Biegefestigkeit zementgebundener Spanplatten. Holz Als Roh-Und. Werkst. 1987, 45, 131–136. [Google Scholar] [CrossRef]
- Moslemi, A.A.; Garcia, J.F.; Hofstrand, A.D. Effect of Various Treatments and Additives on Wood-Portland Cement-Water Systems. Wood Fiber Sci. 1983, 15, 164–176. [Google Scholar]
- Simatupang, M.H.; Geimer, R.L. Inorganic binder for wood composites: Feasibility and limitations. In Proceedings of the Wood Adhesives Symposium, Madison, WI, USA, 16–18 May 1990; Forest Products Laboratory, USDA Forest Service, Forest Products Research Society: Madison, WI, USA, 1990. [Google Scholar]
- Keegan, C.E.; Charles, E.; Blatner, K.A.; Wichman, D.P. Use and value of western larch as a commercial timber species. Ecol. Manag. Larix For. A Look Ahead; Gen. Tech. Rep. GTR-INT-319 1995, 155–157. [Google Scholar]
- Gou, J.; Chang, J.; Huang, Y.; Han, Y.; Ren, X. Characterization of Nitrogen Forms in Larch Wood Particle Board. In Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 10–12 May 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, J.; Zhu, X.D. Influence of processing parameters on VOC emission from particleboards. Environ. Monit. Assess. 2010, 171, 249–254. [Google Scholar] [CrossRef]
- Lo, K.S.; Liew, K.C. Effect of extraction solvent on mechanical properties of particleboard produced from cultivated Acacia hybrid. J. Indian Acad. Wood Sci. 2011, 8, 46–49. [Google Scholar] [CrossRef]
- Tudor, E.M.; Barbu, M.C.; Petutschnigg, A.; Reh, R.; Kristak, L. Analysis of Larch-Bark Capacity for Formaldehyde Removal in Wood Adhesives. Int. J. Environ. Res. Public Health 2020, 17, 764. [Google Scholar] [CrossRef] [PubMed]
- Kain, G.; Tudor, E.M.; Barbu, M.C. Bark Thermal Insulation Panels: An Explorative Study on the Effects of Bark Species. Polymers 2020, 12, 2140. [Google Scholar] [CrossRef] [PubMed]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Reh, R.; Kristak, L. Sound-Absorption Coefficient of Bark-Based Insulation Panels. Polymers 2020, 12, 1012. [Google Scholar] [CrossRef]
- Kain, G.; Stratev, D.; Tudor, E.; Lienbacher, B.; Weigl, M.; Barbu, M.C.; Petutschnigg, A. Qualitative investigation on VOC-emissions from spruce (Picea abies) and larch (Larix decidua) loose bark and bark panels. Eur. J. Wood Prod. 2020, 78, 403–412. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, J.; Zhu, X.D. Evaluation of mechanical properties and formaldehyde emissions of particleboards with nanomaterial-added melamine-impregnated papers. Eur. J. Wood Prod. 2015, 73, 449–455. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, X.; Qin, X.; Wang, W.; Hu, Y.; Yuan, D. Identification and characterization of odorous volatile organic compounds emitted from wood-based panels. Env. Monit Assess 2020, 192, 348. [Google Scholar] [CrossRef]
- Bednarczyk, D.; Boruszewski, P. Lightweight particleboards—Manufacturing modification using a blowing agent from the group of bicarbonates. Annals of Warsaw University of Life Sciences—SGGW. For. Wood Technol. 2022, 117, 55–62. [Google Scholar] [CrossRef]
- Wenig, C.; Reppe, F.; Horbelt, N.; Spener, J.; Berendt, F.; Cremer, T.; Frey, M.; Burgert, I.; Eder, M. Adhesives free bark panels: An alternative application for waste material. PLoS ONE 2023, 18, e0280721. [Google Scholar] [CrossRef] [PubMed]
- Kajita, H.; Imamura, Y. Chemically Modified Particleboards. In Recent Research on Wood and Wood-Based Materials; Shiraishi, N., Kajita, H., Norimoto, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 67–74. ISBN 9781483178219. [Google Scholar] [CrossRef]
- Ninikas, K.; Mitani, A.; Koutsianitis, D.; Ntalos, G.; Taghiyari, H.R.; Papadopoulos, A.N. Thermal and Mechanical Properties of Green Insulation Composites Made from Cannabis and Bark Residues. J. Compos. Sci. 2021, 5, 132. [Google Scholar] [CrossRef]
- Tudor, E.M.; Scheriau, C.; Barbu, M.C.; Réh, R.; Krišťák, Ľ.; Schnabel, T. Enhanced resistance to fire of the bark-based panels bonded with clay. Appl. Sci. 2020, 10, 5594. [Google Scholar] [CrossRef]
- Czajka, M.; Fabisiak, E. Radial variation of the content of cellulose and lignin in selected softwood species. Ann. Wars. Univ. Life Sci.—SGGW For. Technol. 2017, 100, 233–238. Available online: https://journals.indexcopernicus.com/api/file/viewByFileId/349531 (accessed on 10 March 2024).
- Akbulut, T.; Ayrılmış, N. Yongalevha Endüstrisi (Particleboard Industry). İstanbul Universitesi-Cerrahpaşa; IUC University Press: Yokohama, Kanagawa, 2024; 126p, ISBN 978-605-7880-49-9. [Google Scholar]
Density (kg/m3) | The Moisture Content of Freshly Cut Wood (%) | Fiber Saturation Point (FSP) (%) | ||
---|---|---|---|---|
In Absolute Dry State ρo | Moisture Content of 30% ρrf | Sapwood | Mature Wood | |
450–510–600 | 530 | 80–110 | 31–34 | |
Shrinkage (%) | Longitudinal | Radial | Tangential | Volumetric |
0.5 | 4.6 | 8.5 | 13.8 |
Property | Parallel to the Fibers w = 12% | Perpendicular to the Fibers w = 12% |
---|---|---|
Tensile strength (MPa) | 94 | 7.3 |
Compressive strength (MPa) | 55 | |
Shear strength (MPa) | 4.5 | |
Bending strength (MPa) | 97 | |
Modulus of elasticity in bending (MPa) | 11,700 | |
Brinell hardness (MPa) | 36 | 14 |
Density (kg/m3) | The Moisture Content of Freshly Cut Wood (%) | Fiber Saturation Point (FSP) (%) | ||
---|---|---|---|---|
In Absolute Dry State ρo | Moisture Content of 30% ρrf | Sapwood | Mature Wood | |
460–800 | 520 | 80–90 | 30–35 | |
Shrinkage (%) | Longitudinal | Radial | Tangential | Volumetric |
0.6 | 5.3 | 7.8 | 14.2 |
Property | Parallel to the Fibers | Perpendicular to the Fibers | ||
---|---|---|---|---|
w = 12% | w > 30% | w = 12% | w > 30% | |
Tensile strength (MPa) | 137 | 7.0 | 4.0 | |
Compressive strength (MPa) | 59.9 | 26.3 | ||
Shear strength (MPa) | 16.2 | 7.7 | ||
Bending strength (MPa) | 123 | 63 | ||
Modulus of elasticity in tension (MPa) | 18,100 | 600 | ||
Modulus of rigidity (MPa) | 15,800 | 600 | ||
Shear elastic modulus (MPa) | 1450 | 800 | ||
Modulus of elasticity in bending (MPa) | 13,300 | 9900 | 800 | |
Toughness (J·cm−2) | 9.32 | 7.85 | ||
Brinell hardness (MPa) | 48 | 20 | ||
Janka hardness (MPa) | 40 |
Exposure | Unprotected and Unimpregnated | Under the Roof | Under the Water | Always Dry |
---|---|---|---|---|
Durability (years) | 3–8–15 | 5–20–30 | 20–40–60 | 300–500 |
Density (kg/m3) | The Moisture Content of Freshly Cut Wood (%) | Fiber Saturation Point (FSP) (%) | ||
---|---|---|---|---|
In Absolute Dry State ρo | Moisture Content of 30% ρrf | Sapwood | Mature Wood | |
400–550–820 | 460 | 100 | 30–40 | 23–28 |
Shrinkage (%) | Longitudinal | Radial | Tangential | Volumetric |
0.3 | 4.3 | 10.4 | 15.0 |
Property | Parallel to the Fibers | Perpendicular to the Fibers | ||
---|---|---|---|---|
w = 12% | w > 30% | w = 12% | w > 30% | |
Tensile strength (MPa) | 107 | |||
Compressive strength (MPa) | 55.0 | 41.0 | 9.7 | |
Shear strength (MPa) | 12.4 | 6.9 | ||
Bending strength (MPa) | 92 | 64 | ||
Modulus of elasticity in tension (MPa) | 14,500 | |||
Modulus of rigidity (MPa) | 14,000 | 600 | ||
Modulus of elasticity in bending (MPa) | 13,800 | 6300 | ||
Toughness (J·cm−2) | 6.0 | 4.0 | ||
Brinell hardness (MPa) | 53 | 19 | ||
Janka hardness (MPa) | 38 | 36.5 | 24.5 |
Exposure | Unprotected, Unimpregnated, and Impregnated | Under the Roof | Under the Water | Always Dry |
---|---|---|---|---|
Durability (years) | 20–60–80 | 100–120–150 | 300–500–700 | 800–1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reh, R.; Kristak, L.; Kral, P.; Pipiska, T.; Jopek, M. Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow. Polymers 2024, 16, 1532. https://doi.org/10.3390/polym16111532
Reh R, Kristak L, Kral P, Pipiska T, Jopek M. Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow. Polymers. 2024; 16(11):1532. https://doi.org/10.3390/polym16111532
Chicago/Turabian StyleReh, Roman, Lubos Kristak, Pavel Kral, Tomas Pipiska, and Miroslav Jopek. 2024. "Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow" Polymers 16, no. 11: 1532. https://doi.org/10.3390/polym16111532
APA StyleReh, R., Kristak, L., Kral, P., Pipiska, T., & Jopek, M. (2024). Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow. Polymers, 16(11), 1532. https://doi.org/10.3390/polym16111532