Synthesis and Characterization of Multiple Stimuli-Responsive Fluorescent Polymer Hydrogels Based on Terpyridine and N-Isopropylacrylamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (1)
2.2. Synthesis of 4′-(N-propenyl-4-pyridinio)-2,2′: 6′,2″-terpyridine perchlorate (2)
2.3. Synthesis of the Fluorescent Hydrogels
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Thermal-Responsive Properties
3.3. Ion-Responsive Properties in Aqueous Solution
3.4. pH-Responsive Properties
3.5. Microstructures
3.6. Rheological Behaviors
3.7. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015, 57, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Naik, V.M.; Gunjal, D.B.; Gore, A.H.; Anbhule, P.V.; Sohn, D.; Bhosale, S.V.; Kolekar, G.B. Nitrogen-doped carbon dot threads as a “turn-off” fluorescent probe for permanganate ions and its hydrogel hybrid as a naked eye sensor for gold(III) ions. Anal. Bioanal. Chem. 2020, 412, 2993–3003. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-F.; Chu, S.; Li, E.; Li, M.; Wang, J.-T.; Wang, Z. Lanthanide-based hydrogels with adjustable luminescent properties synthesized by thiol-Michael addition. Dyes Pigm. 2020, 174, 108091. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Nandi, S.; Jelinek, R. Carbon-dot–hydrogel for enzyme-mediated bacterial detection. RSC Adv. 2017, 7, 588–594. [Google Scholar] [CrossRef]
- Parker, D.; Fradgley, J.D.; Wong, K.-L. The design of responsive luminescent lanthanide probes and sensors. Chem. Soc. Rev. 2021, 50, 8193–8213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qi, Z.; Wang, Q.M.; Chen, M.; Lin, B.; Qu, D.H. A time-dependent fluorescent hydrogel for “time-lock” information encryption. Adv. Funct. Mater. 2022, 32, 2208865. [Google Scholar] [CrossRef]
- Wu, B.Y.; Le, X.X.; Jian, Y.K.; Lu, W.; Yang, Z.Y.; Zheng, Z.K.; Théato, P.; Zhang, J.W.; Zhang, A.; Chen, T. pH and thermo dual-responsive fluorescent hydrogel actuator. Macromol. Rapid Commun. 2018, 40, 1800648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Z.; Xu, X.-D.; Cheng, S.-X.; Zhuo, R.-X. Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 2008, 4, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chu, L.-Y.; Li, Y.-K.; Lee, Y.M. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Polymer 2007, 48, 1718–1728. [Google Scholar] [CrossRef]
- Ma, C.; Lu, W.; Yang, X.; He, J.; Le, X.; Wang, L.; Zhang, J.; Serpe, M.J.; Huang, Y.; Chen, T. Bioinspired anisotropic hydrogel actuators with on–off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater. 2017, 28, 1704568. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Wang, W.; Zhang, Y.; Li, H.; Li, Z. Multistimuli-responsive hydrogels with both anisotropic mechanical performance and anisotropic luminescent behavior. Chem. Eng. J. 2022, 449, 137718. [Google Scholar] [CrossRef]
- Constable, E.C.; Dunphy, E.L.; Housecroft, C.E.; Kylberg, W.; Neuburger, M.; Schaffner, S.; Schofield, E.R.; Smith, C.B. Structural development of free or coordinated 4′-(4-Pyridyl)-2,2′:6′,2′′-terpyridine ligands through N-Alkylation: New strategies for metallamacrocycle formation. Chem.–A Eur. J. 2006, 12, 4600–4610. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.; Dutta, A.; Pal, S.; Ganguly, D.; Chattopadhyay, S.; Das, N.C.; Das, R.K. Strain sensing multi-stimuli responsive light emitting lanthanide-based tough and stretchable hydrogels with tunable luminescence and fast self-recovery using metal–ligand and hydrophobic interactions. New J. Chem. 2023, 47, 5734–5750. [Google Scholar] [CrossRef]
- Harathi, J.; Kumar, R.S.; Kumar, S.K.A.; Saravanakumar, D.; Senthilkumar, S.; Thenmozhi, K. Terpyridine-Zn(II) based water-soluble fluorescent probes for selective detection of pyrophosphate ions in aqueous medium and its bioimaging application in living cells. Sens. Actuators B 2023, 390, 133967. [Google Scholar] [CrossRef]
- Liu, T.; Liu, K.; Zhang, J.; Wang, Z. Terpyridine functionalized oligothiophene: Cadmium(II) ion sensing via visualization and fluorescence. ChemistrySelect 2018, 3, 5559–5565. [Google Scholar] [CrossRef]
- Maroń, A.; Szlapa, A.; Klemens, T.; Kula, S.; Machura, B.; Krompiec, S.; Małecki, J.G.; Świtlicka-Olszewska, A.; Erfurt, K.; Chrobok, A. Tuning the photophysical properties of 4′-substituted terpyridines–an experimental and theoretical study. Org. Biomol. Chem. 2016, 14, 3793–3808. [Google Scholar] [CrossRef]
- Volpert, E.; Selb, J.; Candau, F.o. Influence of the hydrophobe structure on composition, microstructure, and rheology in associating polyacrylamides prepared by micellar copolymerization. Macromolecules 1996, 29, 1452–1463. [Google Scholar] [CrossRef]
- Rzaev, Z.M.O.; Dinçer, S.; Pişkin, E. Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog. Polym. Sci. 2007, 32, 534–595. [Google Scholar] [CrossRef]
- El-Hamshary, H.; El-Garawany, M.; Assubaie, F.N.; Al-Eed, M. Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. J. Appl. Polym. Sci. 2003, 89, 2522–2526. [Google Scholar] [CrossRef]
- Jin, X.-H.; Chen, C.; Ren, C.-X.; Cai, L.-X.; Zhang, J. Bright white-light emission from a novel donor–acceptor organic molecule in the solid state via intermolecular charge transfer. Chem. Com. 2014, 50, 15878–15881. [Google Scholar] [CrossRef]
- Zhu, C.N.; Bai, T.; Wang, H.; Bai, W.; Ling, J.; Sun, J.Z.; Huang, F.; Wu, Z.L.; Zheng, Q. Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability. ACS Appl. Mater. Interfaces 2018, 10, 39343–39352. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liang, X.; You, L.; Yang, Y.; Fen, G.; Gao, Y.; Cui, X. Temperature-sensitive poly(N-isopropylacrylamide)-chitosan hydrogel for fluorescence sensors in living cells and its antibacterial application. Int. J. Biol. Macromol. 2021, 189, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Montaser, A.S.; Rehan, M.; El-Naggar, M.E. pH-thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int. J. Biol. Macromol. 2019, 124, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Elancheliyan, R.; Del Monte, G.; Chauveau, E.; Sennato, S.; Zaccarelli, E.; Truzzolillo, D. Role of charge content in the two-step deswelling of Poly(N-isopropylacrylamide)-based microgels. Macromolecules 2022, 55, 7526–7539. [Google Scholar] [CrossRef]
- Shymborska, Y.; Stetsyshyn, Y.; Awsiuk, K.; Raczkowska, J.; Bernasik, A.; Janiszewska, N.; Dąbczyński, P.; Kostruba, A.; Budkowski, A. Temperature- and pH-responsive schizophrenic copolymer brush coatings with enhanced temperature response in pure water. ACS Appl. Mater. Interfaces 2023, 15, 8676–8690. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Y.; Li, Z.; Han, G.; Guan, X.; Fan, K. Colorimetric detection of Fe(II) and Co(II) by using terpyridine-based derivative. J. Appl. Spectrosc. 2022, 89, 586–592. [Google Scholar] [CrossRef]
- Trigo-López, M.; Muñoz, A.; Ibeas, S.; Serna, F.; García, F.C.; García, J.M. Colorimetric detection and determination of Fe(III), Co(II), Cu(II) and Sn(II) in aqueous media by acrylic polymers with pendant terpyridine motifs. Sens. Actuators B 2016, 226, 118–126. [Google Scholar] [CrossRef]
- Liang, Z.-Q.; Wang, C.-X.; Yang, J.-X.; Gao, H.-W.; Tian, Y.-P.; Tao, X.-T.; Jiang, M.-H. A highly selective colorimetric chemosensor for detecting the respective amounts of iron(ii) and iron(iii) ions in water. New J. Chem. 2007, 31, 906–910. [Google Scholar] [CrossRef]
- Lu, C.; Xu, Z.; Cui, J.; Zhang, R.; Qian, X. Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range: A new strategy to discriminate cadmium from zinc. J. Org. Chem. 2007, 72, 3554–3557. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Leung, C.W.T.; Lam, J.W.Y.; Liu, J.; Tseng, N.-W.; Kwok, R.T.K.; Yu, Y.; Wang, Z.; Tang, B.Z. Fluorogenic Zn(II) and chromogenic Fe(II) sensors based on terpyridine-substituted tetraphenylethenes with aggregation-induced emission characteristics. ACS Appl. Mater. Interfaces 2011, 3, 3411–3418. [Google Scholar] [CrossRef]
- Heo, G.; Manivannan, R.; Kim, H.; Kim, M.J.; Min, K.S.; Son, Y.-A. Developing an RGB-arduino device for the multi-color recognition, detection and determination of Fe(III), Co(II), Hg(II) and Sn(II) in aqueous media by a terpyridine moiety. Sens. Actuators B 2019, 297, 126723. [Google Scholar] [CrossRef]
- Meier, M.A.R.; Schubert, U.S. Fluorescent sensing of transition metal ions based on the encapsulation of dithranol in a polymeric core shell architecture. Chem. Commun. 2005, 36, 4610–4612. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chi, Z.; Shi, G.; Dong, H.; Ma, C.; Chen, X. A terpyridine-based chemosensor for detection transition metal ions in aqueous solution: Synthesis and characterization. Eur. Polym. J. 2021, 159, 110716. [Google Scholar] [CrossRef]
- Zhang, D.; Tian, X.; Li, H.; Zhao, Y.; Chen, L. Novel fluorescent hydrogel for the adsorption and detection of Fe (III). Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125563. [Google Scholar] [CrossRef]
- Zhuge, X.; Li, J.; Li, Y.; Yuan, C. A turn-off fluorescence probe based on terpyridine for pH monitoring. Luminescence 2019, 35, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Constable, E.C.; Housecroft, C.E.; Thompson, A.C.; Passaniti, P.; Silvi, S.; Maestri, M.; Credi, A. pH-sensitive Ru(II) and Os(II) bis(2,2′:6′,2″-terpyridine) complexes: A photophysical investigation. Inorg. Chim. Acta 2007, 360, 1102–1110. [Google Scholar] [CrossRef]
- Fan, K.; Wang, X.; Ma, Y.; Yang, H.; Han, G.; Zhou, L.; Fang, S. Terpyridine-functionalized chemically cross-linked polyacrylamide hydrogel for white emission and multistimuli-responsive behaviour. New J. Chem. 2020, 44, 8351–8356. [Google Scholar] [CrossRef]
- Adachi, N.; Kaneko, Y.; Sekiguchi, K.; Sugiyama, H.; Sugeno, M. pH-responsive fluorescence chemical sensor constituted by conjugated polymers containing pyridine rings. Luminescence 2015, 30, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Kappaun, S.; Horner, S.; Kelterer, A.M.; Waich, K.; Grasse, F.; Graf, M.; Romaner, L.; Niedermair, F.; Müllen, K.; Grimsdale, A.C.; et al. The effect of protonation on the optical properties of conjugated fluorene–pyridine copolymers. Macromol. Chem. Phys. 2008, 209, 2122–2134. [Google Scholar] [CrossRef]
- Xia, L.-W.; Xie, R.; Ju, X.-J.; Wang, W.; Chen, Q.; Chu, L.-Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013, 4, 2226. [Google Scholar] [CrossRef]
- Janovák, L.; Varga, J.; Kemény, L.; Dékány, I. Investigation of the structure and swelling of poly(N-isopropyl-acrylamide-acrylamide) and poly(N-isopropyl-acrylamide-acrylic acid) based copolymer and composite hydrogels. Colloid Polym. Sci. 2008, 286, 1575–1585. [Google Scholar] [CrossRef]
- Ekerdt, B.L.; Fuentes, C.M.; Lei, Y.; Adil, M.M.; Ramasubramanian, A.; Segalman, R.A.; Schaffer, D.V. Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture. Adv. Healthcare Mater. 2018, 7, 1800225. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, W.; Wang, X.; Jiang, W.; Ma, X.; Wang, F.; Zhang, C.; Ren, C. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur. Polym. J. 2021, 146, 110253. [Google Scholar] [CrossRef]
- Rehman, T.U.; Shah, L.A. Rheological investigation of polymer hydrogels for industrial application: A review. Int. J. Polym. Anal. Charact. 2022, 27, 430–445. [Google Scholar] [CrossRef]
- Yasui, T.; Zheng, Y.; Nakajima, T.; Kamio, E.; Matsuyama, H.; Gong, J.P. Rate-independent self-healing double network hydrogels using a thixotropic sacrificial network. Macromolecules 2022, 55, 9547–9557. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Li, M.; Shang, Q.; Xie, R.; Yu, J.; Shen, K.; Zhang, Y.; Cheng, Y. Toughening double-network hydrogels by polyelectrolytes. Adv. Mater. 2023, 35, 2301551. [Google Scholar] [CrossRef]
- He, M.; Shi, L.; Wang, G.; Cheng, Z.; Han, L.; Zhang, X.; Wang, C.; Wang, J.; Zhou, P.; Wang, G. Biocompatible and biodegradable chitosan/sodium polyacrylate polyelectrolyte complex hydrogels with smart responsiveness. Int. J. Biol. Macromol. 2020, 155, 1245–1251. [Google Scholar] [CrossRef]
Hydrogel | NIPAM (mol %) | TPY (mol %) | AM (mol %) |
---|---|---|---|
P-NIPAM10-TPY0.01 | 10.00 | 0.01 | 89.99 |
P-NIPAM10-TPY0.03 | 10.00 | 0.03 | 89.97 |
P-NIPAM10-TPY0.05 | 10.00 | 0.05 | 89.95 |
P-NIPAM10-TPY0.9 | 10.00 | 0.90 | 89.10 |
P-NIPAM20-TPY0.05 | 20.00 | 0.05 | 79.95 |
P-NIPAM30-TPY0.05 | 30.00 | 0.05 | 69.95 |
Hydrogels | λmax/nm | ||||
---|---|---|---|---|---|
0 min | 2 min | 10 min | 60 min | 360 min | |
P-NIPAM10-TPY0.01 | 422 | 409 | 406,572 | 407,530 | 402,570 |
P-NIPAM10-TPY0.03 | 431 | 421 | 406,573 | 405,534 | 406,569 |
P-NIPAM10-TPY0.05 | 436 | 429 | 404,574 | 413,535 | 404,572 |
P-NIPAM10-TPY0.9 | 440 | 438 | 439 | 434 | 425 |
P-NIPAM20-TPY0.05 | 430 | 427 | 421 | 411,534 | 368,567 |
P-NIPAM30-TPY0.05 | 437 | 435 | 421 | 408,529 | 391,574 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Zhao, L.; Xie, C.; Wang, X.; He, Z.; Chen, X. Synthesis and Characterization of Multiple Stimuli-Responsive Fluorescent Polymer Hydrogels Based on Terpyridine and N-Isopropylacrylamide. Polymers 2024, 16, 1519. https://doi.org/10.3390/polym16111519
Ma Z, Zhao L, Xie C, Wang X, He Z, Chen X. Synthesis and Characterization of Multiple Stimuli-Responsive Fluorescent Polymer Hydrogels Based on Terpyridine and N-Isopropylacrylamide. Polymers. 2024; 16(11):1519. https://doi.org/10.3390/polym16111519
Chicago/Turabian StyleMa, Zihan, Longhao Zhao, Chunhua Xie, Xianjian Wang, Ziyuan He, and Xuegang Chen. 2024. "Synthesis and Characterization of Multiple Stimuli-Responsive Fluorescent Polymer Hydrogels Based on Terpyridine and N-Isopropylacrylamide" Polymers 16, no. 11: 1519. https://doi.org/10.3390/polym16111519
APA StyleMa, Z., Zhao, L., Xie, C., Wang, X., He, Z., & Chen, X. (2024). Synthesis and Characterization of Multiple Stimuli-Responsive Fluorescent Polymer Hydrogels Based on Terpyridine and N-Isopropylacrylamide. Polymers, 16(11), 1519. https://doi.org/10.3390/polym16111519