Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan–Clay Composite Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Synthesis of Composite Material
2.4. Experiment for the Removal of Chromium
2.5. Statistical Treatment of the Data
3. Results and Discussion
3.1. Characterization of the Synthetic Adsorbent
3.1.1. XRD Analysis
3.1.2. SEM/EDS Analysis
3.1.3. BET Analysis
3.1.4. TGA Analysis
3.2. Adsorption Mechanism
3.3. Adsorption Properties
3.3.1. Effect of pH
3.3.2. Effect of Competitive Cations
3.3.3. Adsorption Kinetics
3.3.4. Adsorption Thermodynamics
3.3.5. Adsorption Isotherm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, M. Development of Environment-Friendly Adsorbents and Adsorption of Heavy Metals. Doctoral Dissertation, Niigata University, Niigata, Japan, 2016; pp. 1–110. [Google Scholar]
- Krishna Kumar, A.S.; Jiang, S.J.; Tseng, W.L. Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J. Mater. Chem. A 2015, 3, 7044–7057. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Liu, D.M.; Dong, C.; Xu, B. Preparation of magnetic kaolin embedded chitosan beads for efficient removal of hexavalent chromium from aqueous solution. J. Environ. Chem. Eng. 2021, 9, 105438. [Google Scholar] [CrossRef]
- Yang, J.; Hou, B.; Wang, J. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Kishima, C.; Zhang, H.; Miyamoto, N.; Kano, N. Removal of chromium(VI) by chitosan beads modified with sodium dodecyl sulfate (SDS). Appl. Sci. 2020, 10, 4745. [Google Scholar] [CrossRef]
- Maleki, A.; Pajootan, E.; Hayati, B. Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2015, 51, 127–134. [Google Scholar] [CrossRef]
- Elgadir, M.A.; Uddin, M.S.; Ferdosh, S.; Adam. A.; Chowdhury, A.J.K.; Sarker, M.Z.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J. Food Drug Anal. 2015, 23, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, J.; Huang, S.; Li, B. Application of Konjac Glucomannan with Chitosan Coating in Yellow Alkaline Noodles. Foods 2023, 12, 3569. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial actions and applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Das, A.; Ringu, T.; Ghosh, S.; Pramanik, N. A Comprehensive Review on Recent Advances in Preparation, Physicochemical Characterization, and Bioengineering Applications of Biopolymers; Springer: Berlin/Heidelberg, Germany, 2023; Volume 80. [Google Scholar] [CrossRef]
- Omidian, H.; Dey Chowdhury, S.; Babanejad, N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023, 15, 1836. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An overview of its properties and applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Buckner, C.A.; Lafrenie, R.M.; Dénommée, J.A.; Caswell, J.M.; Want, D.A.; Gan, G.G.; Leong, Y.C.; Bee, P.C.; Chin, E.; Teh, A.K.H.; et al. We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1 %. InTech 2016, 11, 13. [Google Scholar]
- Gao, Z.; Li, X.; Wu, H.; Zhao, S.; Deligeer, W.; Asuha, S. Magnetic modification of acid-activated kaolin: Synthesis, characterization, and adsorptive properties. Microporous Mesoporous Mater. 2015, 202, 1–7. [Google Scholar] [CrossRef]
- Biswas, S.; Rashid, T.U.; Debnath, T.; Haque, P.; Rahman, M.M. Application of chitosan-clay biocomposite beads for removal of heavy metal and dye from industrial effluent. J. Compos. Sci. 2020, 4, 16. [Google Scholar] [CrossRef]
- Dai, J.; Ren, F.L.; Tao, C. Adsorption of Cr(VI) and speciation of Cr(VI) and Cr(III) in aqueous solutions using chemically modified chitosan. Int. J. Environ. Res. Public Health 2012, 9, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Elanchezhiyan, S.S.; Karthikeyan, P.; Rathinam, K.; Hasmath Farzana, M.; Park, C.M. Magnetic kaolinite immobilized chitosan beads for the removal of Pb(II) and Cd(II) ions from an aqueous environment. Carbohydr. Polym. 2021, 261, 117892. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, P.; Meenakshi, S. Fabrication of Hybrid Chitosan Encapsulated Magnetic-Kaolin Beads for Adsorption of Phosphate and Nitrate Ions from Aqueous Solutions. Int. J. Biol. Macromol. 2021, 168, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Subari Wahyudi, T. Improving tapin kaolin quality for white ware ceramic. Indones. Min. J. 2014, 17, 87–97. [Google Scholar]
- Pavoni, J.M.F.; Luchese, C.L.; Tessaro, I.C. Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int. J. Biol. Macromol. 2019, 138, 693–703. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Gui, Q.; Yang, H. Continuous production of uniform chitosan beads as hemostatic dressings by a facile flow injection method. J. Mater. Chem. B 2020, 8, 7941–7946. [Google Scholar] [CrossRef]
- Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol. Liq. 2018, 273, 425–434. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Fatinathan, S. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies. J. Environ. Manag. 2010, 91, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Struijk, M.; Rocha, F.; Detellier, C. Novel thio-kaolinite nanohybrid materials and their application as heavy metal adsorbents in wastewater. Appl. Clay Sci. 2017, 150, 192–201. [Google Scholar] [CrossRef]
- Bat-Amgalan, M.; Miyamoto, N.; Kano, N.; Yunden, G.; Kim, H.J. Preparation and Characterization of Low-Cost Ceramic Membrane Coated with Chitosan: Application to the Ultrafine Filtration of Cr(VI). Membranes 2022, 12, 835. [Google Scholar] [CrossRef] [PubMed]
- Zare, S.; Kargari, A. Membrane Properties in Membrane Distillation. In Emerging Technologies for Sustainable Desalination Handbook; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Han, Y.S.; Lee, S.H.; Choi, K.H.; Park, I. Preparation and characterization of chitosan-clay nanocomposites with antimicrobial activity. J. Phys. Chem. Solids 2010, 71, 464–467. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, Y.; Zhang, Q.; Guo, X.; Peng, Y.; Xiao, H.; Chen, X.; Luo, J. Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydr. Polym. 2015, 130, 333–343. [Google Scholar] [CrossRef]
- Guo, D.M.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R.; Yang, D.J. Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydr. Polym. 2018, 202, 306–314. [Google Scholar] [CrossRef]
- Abou Alsoaud, M.M.; Taher, M.A.; Hamed, A.M.; Elnouby, M.S.; Omer, A.M. Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Sci. Rep. 2022, 12, 12972. [Google Scholar] [CrossRef]
- Beverskog, B.; Puigdomenech, I. Revised pourbaix diagrams for chromium at 25–300°C. Corros. Sci. 1997, 39, 43–57. [Google Scholar] [CrossRef]
- Bat-Amgalan, M.; Khashbaatar, Z.; Anak, D.E.V.; Sari, M.N.M.; Miyamoto, N.; Kano, N.; Kim, H.-J.; Yunden, G. Adsorption of Cr(III) from an Aqueous Solution by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). J. Environ. Prot. 2021, 12, 939–960. [Google Scholar] [CrossRef]
- Darwish, A.A.A.; Rashad, M.; Al-aoh, H.A. Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes Pigments 2018, 160, 563–571. [Google Scholar] [CrossRef]
- Al-Harby, N.F.; Albahly, E.F.; Mohamed, N.A. Kinetics, isotherm and thermodynamic studies for efficient adsorption of congo red dye from aqueous solution onto novel cyanoguanidine-modified chitosan adsorbent. Polymers 2021, 13, 4446. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl. Water Sci. 2017, 7, 1965–1977. [Google Scholar] [CrossRef]
- Aljeboree, A.M.; Alrazzak, N.A.; Alqaraguly, M.B.; Mahdi, M.A.; Jasim, L.S.; Alkaim, A.F. Adsorption of pollutants by using low-cost (Environment-Friendly): Equilibrium, kinetics and thermodynamic studies: A review. Syst. Rev. Pharm. 2020, 11, 1988–1997. [Google Scholar]
- Zarghami, Z.; Akbari, A.; Latifi, A.M.; Amani, M.A. Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics. Bioresour. Technol. 2016, 205, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Konicki, W.; Aleksandrzak, M.; Mijowska, E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic. Chem. Eng. Res. Des. 2017, 123, 35–49. [Google Scholar] [CrossRef]
- Bai, C.; Wang, L.; Zhu, Z. Adsorption of Cr(III) and Pb(II) by graphene oxide/alginate hydrogel membrane: Characterization, adsorption kinetics, isotherm and thermodynamics studies. Int. J. Biol. Macromol. 2020, 147, 898–910. [Google Scholar] [CrossRef]
- Shahraki, S.; Delarami, H.S.; Khosravi, F.; Nejat, R. Improving the adsorption potential of chitosan for heavy metal ions using aromatic ring-rich derivatives. J. Colloid Interface Sci. 2020, 576, 79–89. [Google Scholar] [CrossRef]
- Hamd, A.; Rady, D.; Shaban, M.; Elsayed, K.N.; Al Mohamadi, H.; Elzanaty, A.M.; Ahmed, S.A.; El-Sayed, R.; Soliman, N.K. Application of nano bio-clay composite in a scaling-up study for wastewater treatment. Biointerface Res. Appl. Chem. 2022, 12, 6393–6414. [Google Scholar] [CrossRef]
- Castro-Castro, J.D.; Macías-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Adsorption of Cr(VI) in Aqueous Solution Using a Surfactant-Modified Bentonite. Sci. World J. 2020, 2020, 3628163. [Google Scholar] [CrossRef] [PubMed]
- Archana, S.; Jayanna, B.K.; Ananda, A.; Shilpa, B.M.; Pandiarajan, D.; Muralidhara, H.B.; Kumar, K.Y. Synthesis of nickel oxide grafted graphene oxide nanocomposites—A systematic research on chemisorption of heavy metal ions and its antibacterial activity. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100486. [Google Scholar] [CrossRef]
- Nasanjargal, S.; Munkhpurev, B.A.; Kano, N.; Kim, H.J.; Ganchimeg, Y. The Removal of Chromium(VI) from Aqueous Solution by Amine-Functionalized Zeolite: Kinetics, Thermodynamics, and Equilibrium Study. J. Environ. Prot. 2021, 12, 654–675. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Liu, D.; Li, T.; Yu, G. Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium. Int. J. Biol. Macromol. 2019, 139, 352–360. [Google Scholar] [CrossRef]
Sample | Mass, % | |||
---|---|---|---|---|
Mg | Al | Si | Ca | |
Natural clay | 14.90 | 17.56 | 44.89 | 25.56 |
Acid-treated clay | - | 20.13 | 60.64 | 19.22 |
Heat-treated clay | - | 15.82 | 58.32 | 25.85 |
Sample | Surface Area (m2·g−1) | Pore Volume (cc·g−1) | Pore Size (nm) |
---|---|---|---|
Pure chitosan bead | 5.802 | 0.047 | 16.37 |
Chitosan–clay (8:1) bead | 2.157 | 0.069 | 64.66 |
Chitosan–clay (8:2) bead | 2.525 | 0.136 | 108.3 |
Elements | 8:1 Chitosan–Clay Bead (Cr(III)) | 8:2 Chitosan–Clay Bead (Cr(VI)) | ||||
---|---|---|---|---|---|---|
Atomic, % | Sub-Peak | Ratio, % | Atomic, % | Sub-Peak | Ratio, % | |
C | 71.88 | C-C | 57.34 | 71.23 | C-C | 36.77 |
C-NH2 | 34.56 | C-NH2 | 15.56 | |||
C-O, C-O-C | 2.61 | C-O, C-O-C | 34.83 | |||
C-NHR | - | C-NHR | 3.64 | |||
C=O, O-C=O | 5.46 | C=O, O-C=O | 9.17 | |||
O | 19.06 | C-O, C-O-C | 53.18 | 20.36 | C-O, C-O-C | 47.11 |
OH | 44.10 | OH | 34.30 | |||
COOH, H2O(O-H) | 2.70 | COOH, H2O(O-H) | 18.58 | |||
N | 4.98 | C-N | 71.91 | 4.39 | C-N | 53.04 |
N-H | 22.58 | N-H | 36.05 | |||
NH3+ | 5.49 | NH3+ | 10.89 | |||
Cr | 1.61 | Cr(III) 2p3/2 | 69.48 | 0.94 | Cr(VI) 2p3/2 | 68.14 |
Cr(III) 2p1/2 | 30.51 | Cr(VI) 2p1/2 | 31.85 | |||
Si | 2.48 | Si-C | 2.06 | 3.08 | Si-C | 2.41 |
Si-O-C | 87.09 | Si-O-C | 66.19 | |||
SiO2 | 10.83 | SiO2 | 31.39 |
Ions | C0, mg·L−1 | qe (exp), mg·g−1 | Pseudo First Order | Pseudo Second Order | ||||
---|---|---|---|---|---|---|---|---|
K1, min−1 | qe (cal), mg·g−1 | R2 | K2, g·(mg·g)−1 | qe (cal), mg·g−1 | R2 | |||
Cr(III) | 10 | 3.51 | 0.106 | 4.74 | 0.862 | 0.347 | 3.85 | 0.991 |
Cr(VI) | 4.16 | 0.113 | 5.32 | 0.871 | 1.192 | 5.03 | 0.991 | |
Cr(III) | 25 | 8.98 | 0.111 | 2.82 | 0.763 | 0.332 | 9.09 | 0.999 |
Cr(VI) | 10.31 | 0.124 | 8.65 | 0.892 | 0.165 | 12.50 | 0.998 | |
Cr(III) | 50 | 19.49 | 0.114 | 13.82 | 0.873 | 0.216 | 20.20 | 0.998 |
Cr(VI) | 23.82 | 0.150 | 26.07 | 0.901 | 0.061 | 27.03 | 0.994 | |
Cr(III) | 100 | 42.12 | 0.116 | 11.53 | 0.839 | 0.208 | 43.48 | 0.999 |
Cr(VI) | 40.11 | 0.156 | 53.95 | 0.881 | 0.033 | 45.46 | 0.991 |
T, K | C0, mg·L−1 | ||||||
---|---|---|---|---|---|---|---|
Cr(III) | Cr(VI) | Cr(III) | Cr(VI) | Cr(III) | Cr(VI) | ||
298 | 50 | −1.418 | −5.728 | 9.33 | 14.68 | 35.91 | 58.43 |
308 | −1.699 | −6.258 | |||||
318 | −2.012 | −6.999 | |||||
328 | −2.522 | −7.607 |
Ions | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL | R2 | (L·mg−1) 1/n | 1/n | R2 | ||
Cr(III) | 26.95 | 0.140 | 0.998 | 15.131 | 0.650 | 0.981 |
Cr(VI) | 90.91 | 0.035 | 0.977 | 20.893 | 0.730 | 0.899 |
Adsorbents | pH | Ion | qmax mg·g–1 | Ref |
---|---|---|---|---|
Chitosan beads modified with sodium dodecyl sulfate (SDS) | 4 | Cr(VI) | 3.2 | [6] |
Clay | 7 | Cr(VI) | 13.9 | [43] |
Surfactant-modified bentonite | 3.4 | Cr(VI) | 10.0 | [44] |
Magnetic kaolin-embedded chitosan (MKCS) beads | 3.02 | Cr(VI) | 144.0 | [4] |
Acid-activated kaolin AAK | 4 | Cr(VI) | 50.2 | [15] |
SDS–chitosan | 4 | Cr(III) | 3.4 | [34] |
Graphene oxide/alginate hydrogel membrane GAHMs | 6 | Cr(III) | 118.6 | [45] |
Fe3O4 NPs decorated with MoS2(MoS2@Fe3O4NPs) | 5 | Cr(VI) | 218.2 | [45] |
Chitosan | 3.8 | Cr(III) | 138.0 | [41] |
Amine-functionalized zeolite | 3 | Cr(VI) | 13.5 | [46] |
Aminated cross-linked chitosan beads (CS–DEO–SP) | 2 | Cr(VI) | 358.2 | [47] |
Chitosan–clay biocomposite beads | 3 | Cr(VI), | 50.9 | [16] |
Chitosan–clay composite bead | 4 3 | Cr(III) Cr(VI) | 26.9 90.9 | In this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majigsuren, E.; Byambasuren, U.; Bat-Amgalan, M.; Mendsaikhan, E.; Kano, N.; Kim, H.J.; Yunden, G. Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan–Clay Composite Materials. Polymers 2024, 16, 1399. https://doi.org/10.3390/polym16101399
Majigsuren E, Byambasuren U, Bat-Amgalan M, Mendsaikhan E, Kano N, Kim HJ, Yunden G. Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan–Clay Composite Materials. Polymers. 2024; 16(10):1399. https://doi.org/10.3390/polym16101399
Chicago/Turabian StyleMajigsuren, Enkhtuya, Ulziidelger Byambasuren, Munkhpurev Bat-Amgalan, Enkhtuul Mendsaikhan, Naoki Kano, Hee Joon Kim, and Ganchimeg Yunden. 2024. "Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan–Clay Composite Materials" Polymers 16, no. 10: 1399. https://doi.org/10.3390/polym16101399
APA StyleMajigsuren, E., Byambasuren, U., Bat-Amgalan, M., Mendsaikhan, E., Kano, N., Kim, H. J., & Yunden, G. (2024). Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan–Clay Composite Materials. Polymers, 16(10), 1399. https://doi.org/10.3390/polym16101399