Kinetics of Surface Wettability of Aromatic Polymers (PET, PS, PEEK, and PPS) upon Treatment with Neutral Oxygen Atoms from Non-Equilibrium Oxygen Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Treatment Procedure
2.3. Determination of the Wettability
3. Results and Discussion
- Not much in terms of increased wettability occurs on the PET surface until the O-atom dose reaches 1 × 1021 m−2. Any WCA deviation from a pristine PET is within the limits of experimental error up to the O-atom dose of 1021 m−2.
- After initiating the surface hydrophilization at doses of approximately 1 × 1021 m−2, the WCA decreases exponentially until it reaches the minimal WCA of approximately 20°.
- After receiving the dose of approximately 5 × 1023 m−2, the WCA remains constant at approximately 20° for another order of magnitude larger O-atom fluences. Obviously, all changes in the surface wettability of PET samples occur within the range of O-atom doses between 1021 and 1024 m−2. This observation is consistent with the data provided by Akishev et al. [36], who also reported stabilization of the WCA after receiving the O-atom fluence of approximately 5 × 1023 m−2 when using atmospheric-pressure plasma for a rapid increase in PET wettability.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vesel, A.; Primc, G.; Zaplotnik, R.; Mozetič, M. Applications of highly non-equilibrium low-pressure oxygen plasma for treatment of polymers and polymer composites on an industrial scale. Plasma Phys. Control. Fusion 2020, 62, 024008. [Google Scholar] [CrossRef]
- Jothi Prakash, C.G.; Prasanth, R. Approaches to design a surface with tunable wettability: A review on surface properties. J. Mater. Sci. 2021, 56, 108–135. [Google Scholar] [CrossRef]
- Ma, C.; Nikiforov, A.; Hegemann, D.; De Geyter, N.; Morent, R.; Ostrikov, K. Plasma-controlled surface wettability: Recent advances and future applications. Int. Mater. Rev. 2023, 68, 82–119. [Google Scholar] [CrossRef]
- Booth, J.-P.; Mozetič, M.; Nikiforov, A.; Oehr, C. Foundations of plasma surface functionalization of polymers for industrial and biological applications. Plasma Sources Sci. Technol. 2022, 31, 103001. [Google Scholar] [CrossRef]
- Holländer, A.; Klemberg-Sapieha, J.E.; Wertheimer, M.R. Vacuum-ultraviolet induced oxidation of the polymers polyethylene and polypropylene. J. Polym. Sci. A Polym. Chem. 1995, 33, 2013–2025. [Google Scholar] [CrossRef]
- Holländer, A.; Klemberg-Sapieha, J.E.; Wertheimer, M.R. The influence of vacuum-ultraviolet radiation on poly(ethylene terephthalate). J. Polym. Sci. A Polym. Chem. 1996, 34, 1511–1516. [Google Scholar] [CrossRef]
- Mirabedini, S.M.; Arabi, H.; Salem, A.; Asiaban, S. Effect of low-pressure O2 and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Prog. Org. Coat. 2007, 60, 105–111. [Google Scholar] [CrossRef]
- Kurihara, K.; Hokari, R.; Takada, N. Capillary effect enhancement in a plastic capillary tube by nanostructured surface. Polymers 2021, 13, 628. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-J.; Kim, M.S.; Ahn, D.; Yeo, S.Y.; Lee, S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci. Rep. 2019, 9, 6338. [Google Scholar] [CrossRef]
- Pascual, M.; Kerdraon, M.; Rezard, Q.; Jullien, M.-C.; Champougny, L. Wettability patterning in microfluidic devices using thermally-enhanced hydrophobic recovery of PDMS. Soft Matter 2019, 15, 9253–9260. [Google Scholar] [CrossRef]
- Vesel, A.; Mozetic, M. New developments in surface functionalization of polymers using controlled plasma treatments. J. Phys. D Appl. Phys. 2017, 50, 293001. [Google Scholar] [CrossRef]
- Perez-Roldan, M.J.; Debarnot, D.; Poncin-Epaillard, F. Processing of plasma-modified and polymer-grafted hydrophilic PET surfaces, and study of their aging and bioadhesive properties. RSC Adv. 2014, 4, 31409–31415. [Google Scholar] [CrossRef]
- Zhang, Y.; Ishikawa, K.; Mozetič, M.; Tsutsumi, T.; Kondo, H.; Sekine, M.; Hori, M. Polyethylene terephthalate (PET) surface modification by VUV and neutral active species in remote oxygen or hydrogen plasmas. Plasma Process. Polym. 2019, 16, 1800175. [Google Scholar] [CrossRef]
- Wohlfart, E.; Fernández-Blázquez, J.P.; Arzt, E.; del Campo, A. Nanofibrillar patterns on PET: The influence of plasma parameters in surface morphology. Plasma Process. Polym. 2011, 8, 876–884. [Google Scholar] [CrossRef]
- Donegan, M.; Milosavljević, V.; Dowling, D.P. Activation of PET using an RF atmospheric plasma system. Plasma Chem. Plasma Process. 2013, 33, 941–957. [Google Scholar] [CrossRef]
- Mui, T.S.M.; Mota, R.P.; Quade, A.; Hein, L.R.d.O.; Kostov, K.G. Uniform surface modification of polyethylene terephthalate (PET) by atmospheric pressure plasma jet with a horn-like nozzle. Surf. Coat. Technol. 2018, 352, 338–347. [Google Scholar] [CrossRef]
- Guruvenket, S.; Rao, G.M.; Komath, M.; Raichur, A.M. Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci. 2004, 236, 278–284. [Google Scholar] [CrossRef]
- Haïdopoulos, M.; Horgnies, M.; Mirabella, F.; Pireaux, J.-J. Angle-resolved XPS study of plasma-deposited polystyrene films after oxygen plasma treatment. Plasma Process. Polym. 2008, 5, 67–75. [Google Scholar] [CrossRef]
- Vesel, A. Modification of polystyrene with a highly reactive cold oxygen plasma. Surf. Coat. Technol. 2010, 205, 490–497. [Google Scholar] [CrossRef]
- Ba, O.M.; Marmey, P.; Anselme, K.; Duncan, A.C.; Ponche, A. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods. Colloids Surf. B 2016, 145, 1–7. [Google Scholar] [CrossRef]
- Lau, Y.T.; Chin, O.H.; Lee, H.C.; Chiu, W.S.; Woo, H.J. Plasma surface treatment of polystyrene in a low power low frequency argon glow discharge. Appl. Surf. Sci. 2022, 578, 151963. [Google Scholar] [CrossRef]
- Inagaki, N.; Tasaka, S.; Horiuchi, T.; Suyama, R. Surface modification of poly(aryl ether ether ketone) film by remote oxygen plasma. J. Appl. Polym. Sci. 1998, 68, 271–279. [Google Scholar] [CrossRef]
- Awaja, F.; Bax, D.V.; Zhang, S.; James, N.; McKenzie, D.R. Cell adhesion to PEEK treated by plasma immersion ion implantation and deposition for active medical implants. Plasma Process. Polym. 2012, 9, 355–362. [Google Scholar] [CrossRef]
- Han, X.; Sharma, N.; Spintzyk, S.; Zhou, Y.; Xu, Z.; Thieringer, F.M.; Rupp, F. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization. Dent Mater. 2022, 38, 1083–1098. [Google Scholar] [CrossRef]
- Czwartos, J.; Budner, B.; Bartnik, A.; Wachulak, P.; Butruk-Raszeja, B.A.; Lech, A.; Ciach, T.; Fiedorowicz, H. Effect of extreme ultraviolet (EUV) radiation and EUV induced, N2 and O2 based plasmas on a PEEK surface’s physico-chemical properties and MG63 cell adhesion. Int. J. Mol. Sci. 2021, 22, 8455. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Gabriel, M.; Schmidt, F.; Müller, W.-D.; Schwitalla, A.D. The impact of different low-pressure plasma types on the physical, chemical and biological surface properties of PEEK. Dent Mater. 2021, 37, e15–e22. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Ahn, K.; Jeong, S.Y.; Jeong, E.D.; Jin, J.S.; Bae, J.S.; Kim, H.G.; Cho, C.R. Enhancement of adhesion between polyphenylene sulfide and copper by surface treatments. Curr. Appl. Phys. 2014, 14, 118–121. [Google Scholar] [CrossRef]
- Gacs, J.; Vernon, Z.; Kocsis, L.; Berényi, Z.J.; Bogya, E.S.; Jacob, T. Epoxy mold adhesion on various plasma-treated thermoplastic polymer surfaces. Int. J. Adv. Manuf. Technol. 2022, 120, 4493–4504. [Google Scholar] [CrossRef]
- Hong, R.; Xu, D.; Wang, X.; Long, S.; Zhang, G.; Yang, J. Effect of air dielectric barrier discharge plasma treatment on the adhesion property of sanded polyphenylene sulfide. High Perform. Polym. 2016, 28, 641–650. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, G.; Wang, X.; Huang, Y.; Yang, J.; Li, G. Effect of air plasma treatment on the mechanical properties of polyphenylene sulfide/glass fiber cloth composites. J. Reinf. Plast. Compos. 2013, 32, 786–793. [Google Scholar] [CrossRef]
- Mozetic, M. Extremely non-equilibrium oxygen plasma for direct synthesis of metal oxide nanowires on metallic substrates. J. Phys. D Appl. Phys. 2011, 44, 174028. [Google Scholar] [CrossRef]
- Kutasi, K.; Zaplotnik, R.; Primc, G.; Mozetic, M. Controlling the oxygen species density distributions in the flowing afterglow of O2/Ar–O2 surface-wave microwave discharges. J. Phys. D Appl. Phys. 2014, 47, 025203. [Google Scholar] [CrossRef]
- Paul, D.; Mozetič, M.; Zaplotnik, R.; Ekar, J.; Vesel, A.; Primc, G.; Đonlagić, D. Loss of oxygen atoms on well-oxidized cobalt by heterogeneous surface recombination. Materials 2023, 16, 5806. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-H.; Moon, M.-W.; Park, C.H. Effect of crystallinity on the recovery rate of superhydrophobicity in plasma-nanostructured polymers. RSC Adv. 2020, 10, 10939–10948. [Google Scholar] [CrossRef] [PubMed]
- Primc, G.; Mozetič, M. Hydrophobic recovery of plasma-hydrophilized polyethylene terephthalate polymers. Polymers 2022, 14, 2496. [Google Scholar] [CrossRef] [PubMed]
- Akishev, Y.; Grushin, M.; Dyatko, N.; Kochetov, I.; Napartovich, A.; Trushkin, N.; Minh Duc, T.; Descours, S. Studies on cold plasma–polymer surface interaction by example of PP- and PET-films. J. Phys. D Appl. Phys. 2008, 41, 235203. [Google Scholar] [CrossRef]
- Bötel, F.; Zimmermann, T.; Sütel, M.; Müller, W.-D.; Schwitalla, A.D. Influence of different low-pressure plasma process parameters on shear bond strength between veneering composites and PEEK materials. Dent. Mater. 2018, 34, e246–e254. [Google Scholar] [CrossRef] [PubMed]
- Primc, G. Strategies for improved wettability of polyetheretherketone (PEEK) polymers by non-equilibrium plasma treatment. Polymers 2022, 14, 5319. [Google Scholar] [CrossRef] [PubMed]
- Vesel, A.; Mozetič, M. Low-pressure plasma-assisted polymer surface modifications. In Printing on Polymers; Izdebska, J., Thomas, S., Eds.; William Andrew Publishing: Amsterdam, The Netherlands, 2016; pp. 101–121. [Google Scholar]
- Lehocký, M.; Mráček, A. Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment. Czechoslov. J. Phys. 2006, 56, B1277–B1282. [Google Scholar] [CrossRef]
- Longo, R.C.; Ranjan, A.; Ventzek, P.L.G. Density functional theory study of oxygen adsorption on polymer surfaces for atomic-layer etching: Implications for semiconductor device fabrication. ACS Appl. Nano Mater. 2020, 3, 5189–5202. [Google Scholar] [CrossRef]
- Polito, J.; Denning, M.; Stewart, R.; Frost, D.; Kushner, M.J. Atmospheric pressure plasma functionalization of polystyrene. J. Vac. Sci. Technol. A 2022, 40, 043001. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Mozetič, M.; Primc, G. Surface modification of PS polymer by oxygen-atom treatment from remote plasma: Initial kinetics of functional groups formation. Appl. Surf. Sci. 2021, 561, 150058. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Kovac, J.; Mozetic, M. Initial stages in functionalization of polystyrene upon treatment with oxygen plasma late flowing afterglow. Plasma Sources Sci. Technol. 2018, 27, 094005. [Google Scholar] [CrossRef]
- Mortazavi, M.; Nosonovsky, M. A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl. Surf. Sci. 2012, 258, 6876–6883. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, K.S.; Cho, K.; Park, C.E. Retardation of the surface rearrangement of O2 plasma-treated LDPE by a two-step temperature control. J. Adhes. Sci. Technol. 2001, 15, 1805–1816. [Google Scholar] [CrossRef]
- Strobel, M.; Jones, V.; Lyons, C.S.; Ulsh, M.; Kushner, M.J.; Dorai, R.; Branch, M.C. A Comparison of corona-treated and flame-treated polypropylene films. Plasmas Polym. 2003, 8, 61–95. [Google Scholar] [CrossRef]
- Strobel, M.; Lyons, C.S.; Strobel, J.M.; Kapaun, R.S. Analysis of air-corona-treated polypropylene and poly(ethylene terephthalate) films by contact-angle measurements and X-ray photoelectron spectroscopy. J. Adhes. Sci. Technol. 1992, 6, 429–443. [Google Scholar] [CrossRef]
- Strobel, M.; Sullivan, N.; Branch, M.C.; Jones, V.; Park, J.; Ulsh, M.; Strobel, J.M.; Lyons, C.S. Gas-phase modeling of impinging flames used for the flame surface modification of polypropylene film. J. Adhes. Sci. Technol. 2001, 15, 1–21. [Google Scholar] [CrossRef]
- Teare, D.O.H.; Ton-That, C.; Bradley, R.H. Surface characterization and ageing of ultraviolet–ozone-treated polymers using atomic force microscopy and X-ray photoelectron spectroscopy. Surf. Interface Anal. 2000, 29, 276–283. [Google Scholar] [CrossRef]
- Kostov, K.G.; Nishime, T.M.C.; Hein, L.R.O.; Toth, A. Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies. Surf. Coat. Technol. 2013, 234, 60–66. [Google Scholar] [CrossRef]
- Vida, J.; Ilčíková, M.; Přibyl, R.; Homola, T. Rapid atmospheric pressure ambient air plasma functionalization of poly(styrene) and poly(ethersulfone) foils. Plasma Chem. Plasma Process. 2021, 41, 841–854. [Google Scholar] [CrossRef]
- Arikan, E.; Holtmannspötter, J.; Zimmer, F.; Hofmann, T.; Gudladt, H.-J. The role of chemical surface modification for structural adhesive bonding on polymers—Washability of chemical functionalization without reducing adhesion. Int. J. Adhes. Adhes. 2019, 95, 102409. [Google Scholar] [CrossRef]
- Vesel, A.; Kolar, M.; Doliska, A.; Stana-Kleinschek, K.; Mozetic, M. Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma. Surf. Interface Anal. 2012, 44, 1565–1571. [Google Scholar] [CrossRef]
Reference | Polymer | Plasma Configuration | Power or Power Density | Pressure or Flow | WCA Initial | WCA Final | Time |
---|---|---|---|---|---|---|---|
[12] | PET | CCP-RF | 75 W | 1.3 Pa | 72° | <5° | 10 min |
[13] | PET | ICP-RF diffusing afterglow | 400 W | 0.02 Pa | 75° | ~20° | 24 min |
[14] | PET | CCP RF | 20–100 W | 5–100 Pa | / | ~0° | Order of minutes |
[15] | PET | CCP-RF | 180 W | / | 93° | 34° | Order of minutes |
[16] | PET | APJ | Few W | Atmospheric Ar | 80° | <25° | 20 s |
[17] | PS | ERC MW Electron Cyclotron Resonance | 100–200 W | 0.1 Pa | 66° | 46° at 200 W | 3 min |
[18] | PS | ICP RF | 10 W | 66 Pa | 88° | 5° | 210 s |
[19] | PS | ICP RF | 200 W | 75 Pa | 86° | 3° | 20 s |
[20] | PS | CCP RF | 200 W | 15 sccm | 71° | 8° | Order of minutes |
[21] | PS | CCP RF | 0.18 W | Ar with oxygen impurities | 91° | 20° | 180 s |
[22] | PEEK | CCP RF glowing part | 20–60 W | 17° at 20 W 10° at 60 W | 10 s | ||
[22] | PEEK | CCP RF afterglow | 20–60 W | 25° or 22° * | 30 s | ||
[23] | PEEK | Plasma ion implantation | 100–150 W | 63–66 Pa | ~90° | ~40° | 256 s |
[24] | PEEK | RF CCP | 100 W | 100 Pa | ~90° | 25° or 38° ** | 15 min |
[25] | PEEK | UV-induced O2 plasma | / | / | 74° | 64° | 20 s |
[26] | PEEK | RF CCP | / | / | 80° | ~0° | 10 min |
[27] | PPS | Atmospheric RF | 120 W | Atmospheric Ar/O2 | 96° | 3° | 120 s |
[28] | PPS | 400–1200 W | 100, 200 sccm | 85° | ~40–50° | 10–600 s | |
[29] | PPS | Atmospheric DBD | 5.3 W/cm3 | Atmospheric air | 111° | ~30° | 15 s |
[30] | PPS | Atmospheric DBD | 22 W/cm3 | Atmospheric air | 79° | 40° | 6 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesel, A.; Zaplotnik, R.; Primc, G.; Mozetič, M. Kinetics of Surface Wettability of Aromatic Polymers (PET, PS, PEEK, and PPS) upon Treatment with Neutral Oxygen Atoms from Non-Equilibrium Oxygen Plasma. Polymers 2024, 16, 1381. https://doi.org/10.3390/polym16101381
Vesel A, Zaplotnik R, Primc G, Mozetič M. Kinetics of Surface Wettability of Aromatic Polymers (PET, PS, PEEK, and PPS) upon Treatment with Neutral Oxygen Atoms from Non-Equilibrium Oxygen Plasma. Polymers. 2024; 16(10):1381. https://doi.org/10.3390/polym16101381
Chicago/Turabian StyleVesel, Alenka, Rok Zaplotnik, Gregor Primc, and Miran Mozetič. 2024. "Kinetics of Surface Wettability of Aromatic Polymers (PET, PS, PEEK, and PPS) upon Treatment with Neutral Oxygen Atoms from Non-Equilibrium Oxygen Plasma" Polymers 16, no. 10: 1381. https://doi.org/10.3390/polym16101381
APA StyleVesel, A., Zaplotnik, R., Primc, G., & Mozetič, M. (2024). Kinetics of Surface Wettability of Aromatic Polymers (PET, PS, PEEK, and PPS) upon Treatment with Neutral Oxygen Atoms from Non-Equilibrium Oxygen Plasma. Polymers, 16(10), 1381. https://doi.org/10.3390/polym16101381