Temperature Self-Adaptive and Color-Adjustable Smart Window Based on Templated Cholesteric Liquid Crystals
Abstract
:1. Introduction
2. Design and Fabrication of Templated Single-Layer CLCs
2.1. Material Preparation
2.2. Device Fabrication
3. Thermal and Electrical Modulation on CLCs
3.1. Optical Characteristics of Single-Layer Templated CLC with Adjustable Reflection in the Infrared Band
3.2. Spectral Properties of Single-Layer Templated CLC with Dynamic Color
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ha, N.Y.; Ohtsuka, Y.; Jeong, S.M.; Nishimura, S.; Suzaki, G.; Takanishi, Y.; Ishikawa, K.; Takezoe, H. Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals. Nat. Mater. 2008, 7, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hong, W. Mechanochromism of Structural-Colored Materials. Adv. Opt. Mater. 2020, 8, 2000984. [Google Scholar] [CrossRef]
- Wang, J.; Cai, W.; He, H.; Cen, M.; Liu, J.; Kong, D.; Luo, D.; Lu, Y.-Q.; Liu, Y.J. Cholesteric liquid crystal-enabled electrically programmable metasurfaces for simultaneous near- and far-field displays. Nanoscale 2022, 14, 17921–17928. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Luo, Y.; Lu, J. High-Reflective Templated Cholesteric Liquid Crystal Filters. Molecules 2021, 26, 6889. [Google Scholar] [CrossRef]
- Zhu, Z.; Gao, Y.; Lu, J. Multi-Pitch Liquid Crystal Filters with Single Layer Polymer Template. Polymers 2021, 13, 2521. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Luo, D. Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol. Opt. Express 2017, 25, 26349–26355. [Google Scholar] [CrossRef]
- Boychuk, A.; Shibaev, V.; Cigl, M.; Hamplová, V.; Novotná, V.; Bobrovsky, A. Large Thermally Irreversible Photoinduced Shift of Selective Light Reflection in Hydrazone-Containing Cholesteric Polymer Systems. Chemphyschem 2023, 24, e202300011. [Google Scholar] [CrossRef]
- Khandelwal, H.; Loonen, R.C.G.M.; Hensen, J.L.M.; Debije, M.G.; Schenning, A.P.H.J. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings. Sci. Rep. 2015, 5, 11773. [Google Scholar] [CrossRef]
- Feng, Y.-Q.; Lv, M.-L.; Yang, M.; Ma, W.-X.; Zhang, G.; Yu, Y.-Z.; Wu, Y.-Q.; Li, H.-B.; Liu, D.-Z.; Yang, Y.-S. Application of New Energy Thermochromic Composite Thermosensitive Materials of Smart Windows in Recent Years. Molecules 2022, 27, 1638. [Google Scholar] [CrossRef]
- Wei, Q.; Lv, P.; Zhang, Y.; Zhang, J.; Qin, Z.; de Haan, L.T.; Chen, J.; Wang, D.; Bin Xu, B.; Broer, D.J.; et al. Facile Stratification-Enabled Emergent Hyper-Reflectivity in Cholesteric Liquid Crystals. ACS Appl. Mater. Interfaces 2022, 14, 57235–57243. [Google Scholar] [CrossRef]
- Ogiwara, Y.; Suzuki, T.; Iwata, N.; Furumi, S. Room-Temperature Cholesteric Liquid Crystals of Cellulose Derivatives with Visible Reflection. Polymers 2023, 15, 168. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-C.; Tseng, H.-Y.; Chen, C.-W.; Wang, C.-T.; Jau, H.-C.; Wu, Y.-C.; Hsu, W.-H.; Lin, T.-H. Versatile Energy-Saving Smart Glass Based on Tristable Cholesteric Liquid Crystals. ACS Appl. Energy Mater. 2020, 3, 7601–7609. [Google Scholar] [CrossRef]
- Zhan, Y.; Lu, H.; Jin, M.; Zhou, G. Electrohydrodynamic instabilities for smart window applications. Liq. Cryst. 2020, 47, 977–983. [Google Scholar] [CrossRef]
- Kwon, S.-B.; Lee, S.-J.; Yoon, D.-S.; Yoo, H.-S.; Lee, B.-Y. Transmittance variable liquid crystal modes with a specific gray off-state for low power consumption smart windows. J. Mol. Liq. 2018, 267, 445–449. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Yang, W.; Jiang, X.; Jiang, X.; de Haan, L.T.; Yuan, D.; Zhao, W.; Zheng, N.; Jin, M.; et al. Stable and scalable smart window based on polymer stabilized liquid crystals. J. Appl. Polym. Sci. 2020, 137, 48917. [Google Scholar] [CrossRef]
- Shen, W.B.; Li, G.Q. Recent Progress in Liquid Crystal-Based Smart Windows: Materials, Structures, and Design. Laser Photonics Rev. 2023, 17, 2200207. [Google Scholar] [CrossRef]
- Zhang, W.; Froyen, A.A.F.; Schenning, A.P.H.J.; Zhou, G.; Debije, M.G.; de Haan, L.T. Temperature-Responsive Photonic Devices Based on Cholesteric Liquid Crystals. Adv. Photon- Res. 2021, 2, 2100016. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, W.; Lu, J. Templated Twist Structure Liquid Crystals and Photonic Applications. Polymers 2022, 14, 2455. [Google Scholar] [CrossRef]
- Zheng, Z.-G.; Li, Y.; Bisoyi, H.K.; Wang, L.; Bunning, T.J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356. [Google Scholar] [CrossRef]
- He, W.-L.; Zhang, Y.-Q.; Hu, W.-T.; Zhou, H.-M.; Yang, Z.; Cao, H.; Wang, D. Ionic Chiral Ferrocene Doped Cholesteric Liquid Crystal with Electronically Tunable Reflective Bandwidth performance. Materials 2022, 15, 8749. [Google Scholar] [CrossRef]
- Palto, S.P.; Rybakov, D.O.; Umanskii, B.A.; Shtykov, N.M. Spiral Pitch Control in Cholesteric Liquid Crystal Layers with Hybrid Boundary Conditions. Crystals 2023, 13, 10. [Google Scholar] [CrossRef]
- Meng, C.; Chen, E.; Wang, L.; Tang, S.; Tseng, M.; Guo, J.; Ye, Y.; Yan, Q.F.; Kwok, H. Color-switchable liquid crystal smart window with multi-layered light guiding structures. Opt. Express 2019, 27, 13098–13107. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Han, R.; Li, H.; Cao, H.; Chen, Y.; Wang, D.; Yang, Z.; He, W. Preparation of cholesteric polymer networks with broadband reflection memory effect. Liq. Cryst. 2022, 49, 153–161. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, P.; Zhong, T.; Zhao, Y.; Miao, Z.; He, Z.; Li, K.; Zhang, Y.; Zhao, Y.; Shen, W. Preparation of chiral polymer/cholesteric liquid crystals composite films with broadband reflective capability for smart windows and thermal management of buildings. Opt. Mater. 2021, 121, 111611. [Google Scholar] [CrossRef]
- Miao, Z.; Jia, M.; Gao, J.; Wang, D.; Wang, L. Broad-wave reflection mechanism of polymer-stabilised cholesteric phase liquid crystals doped with natural polymeric nanofibers. Liq. Cryst. 2023, 50, 403–413. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, Z.; Lang, T.; Li, C.; Chu, Y.; Zhao, Y.; Guo, Z.; Zhang, H.; Ma, C.; Wang, D.; et al. Research of nanofibres loaded with ultraviolet absorber to increase the wavewidth of cholesteric liquid crystals. Opt. Mater. 2023, 137, 113545. [Google Scholar] [CrossRef]
- Yu, P.; Chen, X.; Gao, J.; Yao, R.; Ma, C.; Zhang, C.; Zhang, H.; Miao, Z. Polymer-stabilized cholesteric liquid crystal films with broadband reflection formed by photomask polymerization. Opt. Mater. 2023, 136, 113385. [Google Scholar] [CrossRef]
- Zhang, X.; Han, R.; Li, H.; Zhao, X.; Cao, H.; Chen, Y.; Yang, Z.; Wang, D.; He, W. Preparation of Flexible Liquid Crystal Films with Broadband Reflection Based on PD&SLC. Materials 2022, 15, 8896. [Google Scholar] [CrossRef]
- Khandelwal, H.; Debije, M.G.; White, T.J.; Schenning, A.P.H.J. Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. J. Mater. Chem. A 2016, 4, 6064–6069. [Google Scholar] [CrossRef]
- Bobrovsky, A.; Shibaev, V.; Cigl, M.; Hamplová, V.; Bubnov, A. Fast photo- and electro-optical switching of the polymer-stabilised cholesteric liquid crystal composite prepared by the template method. Liq. Cryst. 2023, 50, 1563–1572. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Zhao, X.; Gao, J.; Ma, C.; Zhao, Y.; Yao, R.; Miao, Z.; Shen, W. Electrically induced coloration of polymer-stabilized cholesteric liquid crystal films with broadband reflection capability for smart windows. Dye. Pigment. 2022, 203, 110316. [Google Scholar] [CrossRef]
- Manaila-Maximean, D.; Rosu, C.; Klosowicz, S.; Czuprynski, K.L.; Gilli, J.M.; Aleksander, M. Polymer-Dispersed Cholesteric Liquid Crystals Reflecting In the Infrared Region. Mol. Cryst. Liq. Cryst. 2004, 417, 199–205. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Sagisaka, T.; Matsushima, T.; Ubukata, T.; Yokoyama, Y. Chiral, Thermally Irreversible and Quasi-Stealth Photochromic Dopant to Control Selective Reflection Wavelength of Cholesteric Liquid Crystal. ChemPhysChem 2020, 21, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhao, J.; Wu, L.; Li, Y.; Liu, W.; Yang, Y. Colourful patterns prepared using a cholesteric liquid crystal mixture with both thermochromic and photochromic properties. Liq. Cryst. 2023, 1–9. [Google Scholar] [CrossRef]
- Keating, P.N. A Theory of the Cholesteric Mesophase. Mol. Cryst. Liq. Cryst. 2007, 8, 315–326. [Google Scholar] [CrossRef]
- Shim, K.S.; Heo, J.U.; Jo, S.I.; Lee, Y.-J.; Kim, H.-R.; Kim, J.-H.; Yu, C.-J. Temperature-independent pitch invariance in cholesteric liquid crystal. Opt. Express 2014, 22, 15467–15472. [Google Scholar] [CrossRef]
- Yang, D.-K.; Wu, S.T. Fundamentals of Liquid Crystal Devices: Yang/Fundamentals of Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Cai, J.; Hao, W.; Zeng, S.; Qu, X.; Guo, Y.; Tang, S.; An, X.; Luo, A. Effects of Red Light on Circadian Rhythm: A Comparison Among Lamps with Similar Correlated Color Temperatures Yet Distinct Spectrums. IEEE Access 2021, 9, 59222–59230. [Google Scholar] [CrossRef]
- Brouwer, G.J.; Heeger, D.J.; Sawada, T.; Petrov, A.A.; Larsson, J.; Harrison, C.; Jackson, J.; Oh, S.-M.; Zeringyte, V.; Foster, J.J.; et al. Cross-orientation suppression in human visual cortex. J. Neurophysiol. 2011, 106, 2108–2119. [Google Scholar] [CrossRef]
- Xiao, H.; Cai, H.; Li, X. Non-visual effects of indoor light environment on humans: A review. Physiol. Behav. 2021, 228, 113195. [Google Scholar] [CrossRef]
Sample | HTD [wt%] | R811 [wt%] | TMPTA [wt%] | C3M [wt%] | IRG184 [wt%] |
---|---|---|---|---|---|
Sample-1 | 62.52 | 24.97 | 5.61 | 6.5 | 0.4 |
Sample-2 | 84.92 | 15.08 | |||
Sample-3 | 87.77 | 12.23 |
Sample | HTD [wt%] | R811 [wt%] | TMPTA [wt%] | C3M [wt%] | IRG184 [wt%] |
---|---|---|---|---|---|
Sample-4 | 78.21 | 10.91 | 6.20 | 4.29 | 0.39 |
Sample-5 | 71.45 | 28.55 |
Cell | Template | Refilled Material |
---|---|---|
Cell-1 | Sample-1 | Sample-2 |
Cell-2 | Sample-1 | Sample-3 |
Cell-3 | Sample-4 | Sample-5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Lu, J. Temperature Self-Adaptive and Color-Adjustable Smart Window Based on Templated Cholesteric Liquid Crystals. Polymers 2024, 16, 82. https://doi.org/10.3390/polym16010082
Sun C, Lu J. Temperature Self-Adaptive and Color-Adjustable Smart Window Based on Templated Cholesteric Liquid Crystals. Polymers. 2024; 16(1):82. https://doi.org/10.3390/polym16010082
Chicago/Turabian StyleSun, Changli, and Jiangang Lu. 2024. "Temperature Self-Adaptive and Color-Adjustable Smart Window Based on Templated Cholesteric Liquid Crystals" Polymers 16, no. 1: 82. https://doi.org/10.3390/polym16010082
APA StyleSun, C., & Lu, J. (2024). Temperature Self-Adaptive and Color-Adjustable Smart Window Based on Templated Cholesteric Liquid Crystals. Polymers, 16(1), 82. https://doi.org/10.3390/polym16010082