Single-Component Hydrophilic Terpolymer Thin Film Systems for Imparting Surface Chemical Versatility on Various Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. General Copolymerization
2.3. Photocrosslinking of Thin Films
2.4. Post-Crosslinking Immobilization of Complex Molecules
2.5. Formation of Photocrosslinked Composite Thin Films with fGelMA
2.6. Characterization
2.7. Adhesion and Growth of C2C12 Myoblasts
3. Results and Discussion
3.1. Synthesis of Hydrophilic Terpolymers by RAFT Copolymerization
3.2. Photocrosslinking of Thin Films and Photopatternability
3.3. Post-Crosslinking Surface Functionalization Reactions with Preserved Chemical Functionalities
3.4. Fabrication of Composite Thin Films with fGelMA to Attain Biologically Active Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vermette, P.; Meagher, L. Interactions of Phospholipid- and Poly(ethylene glycol)-Modified Surfaces with Biological Systems: Relation to Physico-Chemical Properties and Mechanisms. Colloids Surf. B 2003, 28, 153–198. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Nørskov, J.K.; Barteau, M.A.; Chen, J.G. Modification of the Surface Electronic and Chemical Properties of Pt(111) by Subsurface 3d Transition Metals. J. Chem. Phys. 2004, 120, 10240–10246. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D. Biocompatible Polymer Materials: Role of Protein—Surface Interactions. Prog. Polym. Sci. 2008, 33, 1059–1087. [Google Scholar] [CrossRef]
- Tirrell, M.; Kokkoli, E.; Biesalski, M. The Role of Surface Science in Bioengineered Materials. Surf. Sci. 2002, 500, 61–83. [Google Scholar] [CrossRef]
- Faibish, R.S.; Yoshida, W.; Cohen, Y. Contact Angle Study on Polymer-Grafted Silicon Wafers. J. Colloid Interface Sci. 2002, 256, 341–350. [Google Scholar] [CrossRef]
- Iqbal, M.; Dinh, D.K.; Abbas, Q.; Imran, M.; Sattar, H.; Ul Ahmad, A. Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces 2019, 2, 349–371. [Google Scholar] [CrossRef]
- Anastasiadis, S.H. Development of Functional Polymer Surfaces with Controlled Wettability. Langmuir 2013, 29, 9277–9290. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Xiang, L.; Zhang, J.; Chen, J.; Zeng, H. Fundamentals and Advances in the Adhesion of Polymer Surfaces and Thin Films. Langmuir 2019, 35, 15914–15936. [Google Scholar] [CrossRef]
- Friedrich, J.F.; Mix, R.; Kühn, G. Adhesion of Metals to Plasma-Induced Functional Groups at Polymer Surfaces. Surf. Coat. Technol. 2005, 200, 565–568. [Google Scholar] [CrossRef]
- Sugihara, H.; Jones, F.R. Promoting the Adhesion of High-Performance Polymer Fibers Using Functional Plasma Polymer Coatings. Polym. Compos. 2009, 30, 318–327. [Google Scholar] [CrossRef]
- Encinas, N.; Pantoja, M.; Abenojar, J.; Martínez, M.A. Control of Wettability of Polymers by Surface Roughness Modification. J. Adhes. Sci. Technol. 2010, 24, 1869–1883. [Google Scholar] [CrossRef]
- Liang; Rieke, P.C.; Liu, J.; Fryxell, G.E.; Young, J.S.; Engelhard, M.H.; Alford, K.L. Surfaces with Reversible Hydrophilic/Hydrophobic Characteristics on Cross-linked Poly(N-isopropylacrylamide) Hydrogels. Langmuir 2000, 16, 8016–8023. [Google Scholar] [CrossRef]
- Kalal, J.; Švec, F.; Maroušek, V. Reactions of Epoxide Groups of Glycidyl Methacrylate Copolymers. J. Polym. Sci. Polym. Symp. 1974, 47, 155–166. [Google Scholar] [CrossRef]
- Vauthier, M.; Jierry, L.; Boulmedais, F.; Oliveira, J.C.; Clancy, K.F.; Simet, C.; Roucoules, V.; Bally-Le Gall, F. Control of Interfacial Diels–Alder Reactivity by Tuning the Plasma Polymer Properties. Langmuir 2018, 34, 11960–11970. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, G.; Cha, J.J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano 2011, 5, 9187–9193. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, Y.; Battaglia, V.; Liu, G. Improving the Performance of Lithium–Sulfur Batteries Using Conductive Polymer and Micrometric Sulfur Powder. J. Mater. Res. 2014, 29, 1027–1033. [Google Scholar] [CrossRef]
- Schmitt, S.K.; Xie, A.W.; Ghassemi, R.M.; Trebatoski, D.J.; Murphy, W.L.; Gopalan, P. Polyethylene Glycol Coatings on Plastic Substrates for Chemically Defined Stem Cell Culture. Adv. Healthc. Mater. 2015, 4, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Krutty, J.D.; Sun, J.; Koesser, K.; Murphy, W.L.; Gopalan, P. Polymer-Coated Magnetic Microspheres Conjugated with Growth Factor Receptor Binding Peptides Enable Cell Sorting. ACS Biomater. Sci. Eng. 2021, 7, 5927–5932. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Kowalonek, J.; Szalla, A.; Sionkowska, A. Surface Modification of Thin Polymeric Films by Air-Plasma or UV-Irradiation. Surf. Sci. 2002, 507–510, 883–888. [Google Scholar] [CrossRef]
- Kowalonek, J.; Kaczmarek, H.; Dąbrowska, A. Air Plasma or UV-irradiation Applied to Surface Modification of Pectin/Poly(vinyl alcohol) Blends. Appl. Surf. Sci. 2010, 257, 325–331. [Google Scholar] [CrossRef]
- Tomura, M.; Huang, C.-H.; Yoshida, Y.; Ono, T.; Yamasaki, S.; Samukawa, S. Plasma-Induced Deterioration of Mechanical Characteristics of Microcantilever. Jpn. J. Appl. Phys. 2010, 49, 04DL20. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and Photostabilization of Polymers, Especially Polystyrene. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed]
- Teacă, C.-A.; Roşu, D.; Bodîrlău, R.; Roşu, L. Structural Changes in Wood under Artificial UV Light Irradiation Determined by FTIR Spectroscopy and Color Measurements—A Brief Review. BioResources 2013, 8, 1478–1507. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Koberstein, J.T. Molecular Design of Functional Polymer Surfaces. J. Polym. Sci. B Polym. Phys. 2004, 42, 2942–2956. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. Hypercrosslinked Porous Polymer Materials: Design, Synthesis, and Applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef] [PubMed]
- Cañamero, P.F.; de la Fuente, J.L.; Madruga, E.L.; Fernández-García, M. Atom Transfer Radical Polymerization of Glycidyl Methacrylate: A Functional Monomer. Macromol. Chem. Phys. 2004, 205, 2221–2228. [Google Scholar] [CrossRef]
- Bryuzgin, E.; Klimov, V.; Le, M.D.; Navrotskiy, A.; Novakov, I. The Superhydrophobic State Stability of Coatings Based on Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates on Cotton Fabric Surface. Fibers Polym. 2020, 21, 1032–1038. [Google Scholar] [CrossRef]
- Romano, A.; Roppolo, I.; Rossegger, E.; Schlogl, S.; Sangermano, M. Recent Trends in Applying Orrtho-Nitrobenzyl Esters for the Design of Photo-Responsive Polymer Networks. Materials 2020, 13, 2777. [Google Scholar] [CrossRef]
- Zhao, H.; Sterner, E.S.; Coughlin, E.B.; Theato, P. o-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 2012, 45, 1723–1736. [Google Scholar] [CrossRef]
- Lee, D.J.; An, S.; Nam, J.; Park, G.; Kim, S.; Kim, M. Light-Mediated Formation of Reactive Surface Chemical Patterns Using Thermally Crosslinkable Photosensitive Copolymers. Bull. Kor. Chem. Soc. 2020, 41, 675–681. [Google Scholar] [CrossRef]
- An, S.; Nam, J.; Kanimozhi, C.; Song, Y.; Kim, S.; Shin, N.; Gopalan, P.; Kim, M. Photoimageable Organic Coating Bearing Cyclic Dithiocarbonate for a Multifunctional Surface. ACS Appl. Mater. Interfaces 2022, 14, 3274–3283. [Google Scholar] [CrossRef] [PubMed]
- Imre, B.; Pukánszky, B. Compatibilization in Bio-Based and Biodegradable Polymer Blends. Eur. Polym. J. 2013, 49, 1215–1233. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, G.; Wong, W.-Y. Recent Design Tactics for High Performance White Polymer Light-Emitting Diodes. J. Mater. Chem. C 2014, 2, 1760–1778. [Google Scholar] [CrossRef]
- Choi, S.; Yutzy, L.D.; Ko, Y.H.; Lee, J.-K.; Jung, J.P.; Kim, M. Photo-Crosslinkable Polymeric Coatings Providing Chemically Versatile Reactive Surfaces on Various Substrates. Chem. Mater. 2023, 35, 3592–3602. [Google Scholar] [CrossRef]
- Das, A.; Shome, A.; Manna, U. Porous and Reactive Polymeric Interfaces: An Emerging Avenue for Achieving Durable and Functional Bio-Inspired Wettability. J. Mater. Chem. A 2021, 9, 824–856. [Google Scholar] [CrossRef]
- Han, E.; Gopalan, P. Cross-Linked Random Copolymer Mats as Ultrathin Nonpreferential Layers for Block Copolymer Self-Assembly. Langmuir 2010, 26, 1311–1315. [Google Scholar] [CrossRef]
- Ozcelik, B.; Chen, R.; Glattauer, V.; Kumar, N.; Willcox, M.D.P.; Thissen, H. Crosslinked Platform Coatings Incorporating Bioactive Signals for the Control of Biointerfacial Interactions. Macromol. Biosci. 2017, 17, 1600315. [Google Scholar] [CrossRef]
- Tonge, C.M.; Sauvé, E.R.; Paisley, N.R.; Heyes, J.E.; Hudson, Z.M. Polymerization of Acrylates Based on n-Type Organic Semiconductors Using Cu(0)-RDRP. Polym. Chem. 2018, 9, 3359–3367. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Zhou, N.; Zhu, J.; Zhang, W.; Pan, X.; Zhang, Z.; Zhu, X. Reversible Deactivation Radical Polymerization in the Presence of Zero-Valent Metals: From Components to Precise Polymerization. Polym. Chem. 2014, 5, 3533–3546. [Google Scholar] [CrossRef]
- Mazumder, A.; Sebastian, E.; Hariharan, M. Solvent Dielectric Delimited Nitro–Nitrito Photorearrangement in a Perylenediimide Derivative. Chem. Sci. 2022, 13, 8860–8870. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Matsumoto, K.; Ohgaki, T.; Sakaguchi, I.; Ohashi, N.; Hishita, S.; Haneda, H. Development of ZnO-Based Surface Plasmon Resonance Gas Sensor and Analysis of UV Irradiation Effect on NO2 Desorption from ZnO Thin Films. J. Ceram. Soc. Jpn. 2010, 118, 193–196. [Google Scholar] [CrossRef]
- Taylor, P.G.; Lee, J.-K.; Zakhidov, A.A.; Chatzichristidi, M.; Fong, H.H.; DeFranco, J.A.; Malliaras, G.G.; Ober, C.K. Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether Solvents. Adv. Mater. 2009, 21, 2249–2346. [Google Scholar] [CrossRef]
- Kim, G.; An, S.; Hyeong, S.-K.; Lee, S.-K.; Kim, M.; Shin, N. Perovskite Pattern Formation by Chemical Vapor Deposition Using Photolithographically Defined Templates. Chem. Mater. 2019, 31, 8212–8221. [Google Scholar] [CrossRef]
- Park, E.J.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Indispensable Platforms for Bioimmobilization: Maleimide-Based Thiol Reactive Hydrogels. Bioconjug. Chem. 2014, 25, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, N.; Gevrek, T.; Sanyal, R.; Sanyal, A. Orthogonal Thiol–Ene ‘Click’ Reactions: A Powerful Combination for Fabrication and Functionalization of Patterned Hydrogels. Chem. Commun. 2017, 53, 8894–8897. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J.A.; Sohn, K.E.; Perry, R.; Ober, C.K.; Kramer, E.J.; Callow, M.E.; Callow, J.A.; et al. Anti-Biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains. Langmuir 2006, 22, 5075–5086. [Google Scholar] [CrossRef]
- Khor, C.M.; Zhu, X.; Messina, M.S.; Poon, S.; Lew, X.Y.; Maynard, H.D.; Jassby, D. Electrically Mediated Membrane Pore Gating via Grafted Polymer Brushes. ACS Mater. Lett. 2019, 1, 647–654. [Google Scholar] [CrossRef]
- Barbieri, L.; Wagner, E.; Hoffmann, P. Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles. Langmuir 2007, 23, 1723–1734. [Google Scholar] [CrossRef]
- Belgodere, J.; Son, D.; Jeon, B.; Choe, J.; Guidry, A.; Bao, A.; Zamin, S.; Parikh, U.; Balaji, S.; Kim, M.; et al. Attenuating Fibrotic Markers of Patient-Derived Dermal Fibroblasts by Thiolated Lignin Composites. ACS Biomater. Sci. Eng. 2021, 7, 2212–2218. [Google Scholar] [CrossRef]
Sample | fPEGMEMA | fGMA or fDTC | fNBOCAEMA | Mn (kg/mol) | Đ | FPEGMEMA | FGMA or FDTC | FNBOCAEMA |
---|---|---|---|---|---|---|---|---|
MGN1 | 0.700 | 0.200 | 0.100 | 17.7 | 1.30 | 0.690 | 0.207 | 0.103 |
MGN2 | 0.750 | 0.150 | 0.100 | 14.2 | 1.34 | 0.758 | 0.136 | 0.106 |
MGN3 | 0.700 | 0.150 | 0.150 | 17.4 | 1.29 | 0.714 | 0.143 | 0.143 |
MGN4 | 0.750 | 0.100 | 0.150 | 14.4 | 1.27 | 0.744 | 0.100 | 0.156 |
MGN5 | 0.700 | 0.100 | 0.200 | 13.1 | 1.26 | 0.694 | 0.118 | 0.188 |
MDN1 | 0.700 | 0.200 | 0.100 | 22.4 | 1.53 | 0.758 | 0.152 | 0.091 |
MDN2 | 0.750 | 0.150 | 0.100 | 19.0 | 1.41 | 0.788 | 0.118 | 0.094 |
MDN3 | 0.700 | 0.150 | 0.150 | 14.3 | 1.38 | 0.736 | 0.132 | 0.132 |
MDN4 | 0.750 | 0.100 | 0.150 | 20.0 | 1.34 | 0.775 | 0.078 | 0.147 |
MDN5 | 0.700 | 0.100 | 0.200 | 20.9 | 1.34 | 0.720 | 0.100 | 0.180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.H.; Nguyen, H.H.T.; Branstetter, C.R.; Park, S.; Lee, J.-K.; Yang, J.; Jung, J.P.; Kim, M. Single-Component Hydrophilic Terpolymer Thin Film Systems for Imparting Surface Chemical Versatility on Various Substrates. Polymers 2024, 16, 44. https://doi.org/10.3390/polym16010044
Ko YH, Nguyen HHT, Branstetter CR, Park S, Lee J-K, Yang J, Jung JP, Kim M. Single-Component Hydrophilic Terpolymer Thin Film Systems for Imparting Surface Chemical Versatility on Various Substrates. Polymers. 2024; 16(1):44. https://doi.org/10.3390/polym16010044
Chicago/Turabian StyleKo, Yun Hee, Hai Ha Tran Nguyen, Christopher R. Branstetter, Soeun Park, Jin-Kyun Lee, Jaesung Yang, Jangwook P. Jung, and Myungwoong Kim. 2024. "Single-Component Hydrophilic Terpolymer Thin Film Systems for Imparting Surface Chemical Versatility on Various Substrates" Polymers 16, no. 1: 44. https://doi.org/10.3390/polym16010044
APA StyleKo, Y. H., Nguyen, H. H. T., Branstetter, C. R., Park, S., Lee, J. -K., Yang, J., Jung, J. P., & Kim, M. (2024). Single-Component Hydrophilic Terpolymer Thin Film Systems for Imparting Surface Chemical Versatility on Various Substrates. Polymers, 16(1), 44. https://doi.org/10.3390/polym16010044