Acidic Metal-Based Functional Ionic Liquids Catalyze the Synthesis of Bio-Based PEF Polyester
Abstract
:1. Introduction
2. Experimental Section
2.1. Main Experimental Reagents
2.2. Methods of Investigation
2.3. Synthesis of Acidic Metal-Based Functional Ionic Liquid Catalysts
2.3.1. Synthesis of Intermediate I [DA-2PS]
2.3.2. Synthesis of Intermediate II [DA-2PS][Cl]2
2.3.3. Synthesis of Acidic Metal-Based Ionic Liquid Catalyst [DA-2PS][XCly]2
2.4. Investigation of the Performance of Acidic Metal-Based Functional Ionic Liquid Catalysts
- (1)
- Esterification reaction: 46.83 g (0.3 mol) of FDCA was weighed and 29.79 g (0.48 mol) of EG was mixed and added to a 250 mL four-necked flask fitted with a mechanical stirring and reduced pressure distillation apparatus, and 0.00045 mol of catalyst (0.15 mol% based on FDCA) was added rapidly under N2 atmosphere. Subsequently, mechanical stirring was turned on and the reaction system was heated to 60 °C, and nitrogen was continuously passed to replace the air in the device. Then, the temperature was slowly increased to 190 °C and the reaction continued at atmospheric pressure, during which the water generated was separated and collected in a timely manner. After reaching the clarification point, the reaction was continued until the temperature at the top of the column dropped below 80 °C, and the reaction was completed. The conversion of FDCA in this reaction was calculated according to [34].
- (2)
- Condensation reaction: open the vacuum device, raise the temperature to 240 °C, vacuum decompression to −0.1 MPa and react for 5 h. As the process continues to collect the generated glycol, vacuum drying for 24 h is used to finally obtain the polymerization product PEF. The intrinsic viscosity (η) of PEF was determined according to the national standard GB/T 12005.1-1989 [35] with the methods reported in the literature [36].
3. Results and Discussion
3.1. Chemical Structure Characterization of Acidic Metal-Based Functional Ionic Liquid Catalysts
3.2. Molecular Structure of Acidic Metal-Based Functional Ionic Liquid Catalysts
3.3. Crystallization Performance of Acidic Metal-Based Functional Ionic Liquid Catalysts
3.4. Thermal Performance of Acidic Metal-Based Functional Ionic Liquid Catalysts
3.5. Pyridine Diacid Probe of Acidic Metal-Based Functional Ionic Liquid Catalysts
3.6. Effect of Catalyst Type on Catalytic Performance
3.7. Influence of Process Parameters on the Catalytic Process
3.7.1. Effect of Catalyst Dosage on Catalytic Performance
3.7.2. Optimization of Optimal Process Parameters Using the Response Surface Methodology
3.8. Characterization of Polyester PEF
3.8.1. FT-IR Structure Characterization of PEF
3.8.2. Hydrogen-Nuclear Magnetic Structure Characterization of PEF
3.8.3. Thermal Stability Analysis of PEF
3.8.4. Differential Scanning Calorimetry Analysis of PEF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mendieta, C.M.; González, G.; Vallejos, M.E.; Area, M.C. Bio-polyethylene furanoate (Bio-PEF) from lignocellulosic biomass adapted to the circular bioeconomy. BioResources 2022, 17, 7313–7337. [Google Scholar] [CrossRef]
- Sousa, A.F.; Coelho, J.F.J.; Silvestre, A.J.D. Renewable-based poly ((ether) ester)s from 2,5-furandicarboxylic acid. Polymer 2016, 98, 129–135. [Google Scholar] [CrossRef]
- Post, C.; Maniar, D.; Voet, V.S.D.; Folkersma, R.; Loos, K. Biobased 2,5-Bis (hydroxymethyl) furan as a Versatile Building Block for Sustainable Polymeric Materials. ACS Omega 2023, 8, 8991–9003. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.K.; Kriegel, R.M.; Koros, W.J. Carbon dioxide sorption and transport in amorphous poly (ethylene furanoate). Macromolecules 2015, 48, 2184–2193. [Google Scholar] [CrossRef]
- Van Berkel, J.; Guigo, N.; Kolstad, J.; Sipos, L.; Wang, B.; Dam, M.; Sbirrazzuoli, N. Isothermal crystallization kinetics of poly (ethylene 2,5-furandicarboxylate). Macromol. Mater. Eng. 2015, 300, 466–474. [Google Scholar] [CrossRef]
- Wu, J.P.; Xie, H.Z.; Wu, L.B.; Li, B.G.; Dubois, P. DBU-catalyzed biobased poly(ethylene 2,5-furandicarboxylate) polyester with rapid melt crystallization: Synthesis, crystallization kinetics and melting behavior. RSC Adv. 2017, 7, 13877. [Google Scholar] [CrossRef]
- Knoop, R.J.I.; Vogelzang, W.; Haveren, J.V.; Es, D. High molecular weight poly(ethylene-2,5-furanoate); Critical aspects in synthesis and mechanical property determination. J. Polym. Sci. Polym. Chem. 2013, 51, 4191–4199. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, Q.; Zhang, Q.; Ye, C.; Zhou, G.Y. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J. Polym. Sci. Polym. Chem. 2012, 50, 1026–1036. [Google Scholar] [CrossRef]
- Hill, J.W.; Carothers, W.H. Studies of Polymerization and Ring Formation. XX. Many-Membered Cyclic Esters. J. Am. Chem. Soc. 1933, 55, 5031–5039. [Google Scholar] [CrossRef]
- Morales-Huerta, J.C.; deIlarduya, A.M.; Muñoz-Guerra, S. Poly (alkylene 2,5-furandicarboxylate) s (PEF and PBF) by ring opening polymerization. Polymer 2016, 87, 148–158. [Google Scholar] [CrossRef]
- Moore, J.A.; Kelly, J.E. Polyesters derived from furan and tetrahydrofuran nuclei. Macromolecules 1978, 11, 568–573. [Google Scholar] [CrossRef]
- Gandini, A.; Coelho, D.; Gomes, M.; Reis, B.; Silvestre, A. Materials from renewable resources based on furan monomers and furan chemistry: Work in progress. J. Mater. Chem. 2009, 19, 8656–8664. [Google Scholar] [CrossRef]
- Gomes, M.; Gandini, A.; Silvestre, A.J.; Reis, B. Synthesis and characterization of poly (2,5-furan dicarboxylate) s based on a variety of diols. J. Polym. Sci. Pol. Chem. 2011, 49, 3759–3768. [Google Scholar] [CrossRef]
- Jiang, Y.; Woortman, A.J.; Alberda van Ekenstein, G.O.; Petrovic, D.M.; Loos, K. Enzymatic synthesis of biobased polyesters using 2,5-bis (hydroxymethyl) furan as the building block. Biomacromolecules 2014, 15, 2482–2493. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Min, K.D.; Nam, B.U.; Park, O.O. High molecular weight bio furan-based co-polyesters for food packaging applications: Synthesis, characterization and solid-state polymerization. Green Chem. 2016, 18, 5142–5150. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Karakatsianopoulou, E.; Kasmi, N.; Majdoub, M.; Papageorgiou, G.Z.; Bikiaris, D.N. Effect of catalyst type on recyclability and decomposition mechanism of poly (ethylene furanoate) biobased polyester. J. Anal. Appl. Pyrolysis. 2017, 126, 357–370. [Google Scholar] [CrossRef]
- Gruter, G.J.M.; Sipos, L.; Adrianus Dam, M. Accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors. Comb. Chem. High Throughput Screen. 2012, 15, 180–188. [Google Scholar] [CrossRef]
- Martino, L.; Guigo, N.; van Berkel, J.G.; Sbirrazzuoli, N. Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly (ethylene 2,5-furandicarboxylate). Compos. Part B Eng. 2017, 110, 96–105. [Google Scholar] [CrossRef]
- Joshi, A.S.; Alipourasiabi, N.; Kim, Y.W.; Coleman, M.R.; Lawrence, J.G. Role of enhanced solubility in esterification of 2,5-furandicarboxylic acid with ethylene glycol at reduced temperatures: Energy efficient synthesis of poly (ethylene 2, 5-furandicarboxylate). React. Chem. Eng. 2018, 3, 447–453. [Google Scholar] [CrossRef]
- Gopalakrishnan, P.; Narayan-Sarathy, S.; Ghosh, T.; Mahajan, K.; Belgacem, M.N. Synthesis and characterization of bio-based furanic polyesters. J. Polym. Res. 2014, 21, 1–9. [Google Scholar] [CrossRef]
- Gubbels, E.; Jasinska-Walc, L.; Noordover, B.A.; Koning, C.E. Linear and branched polyester resins based on dimethyl-2, 5-furandicarboxylate for coating applications. Eur. Polym. J. 2013, 49, 3188–3198. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Zhu, J.; Jiang, Y. Copolyesters based on 2, 5-furandicarboxylic acid (FDCA): Effect of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol units on their properties. Polymers 2017, 9, 305. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Zhang, Y.; Liu, F.; Zhu, J. Modification of poly (ethylene 2, 5-furandicarboxylate) with 1, 4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer 2016, 103, 1–8. [Google Scholar] [CrossRef]
- Wu, J.; Eduard, P.; Thiyagarajan, S.; Noordover, B.A.; van Es, D.S.; Koning, C.E. Semi-Aromatic Polyesters Based on a Carbohydrate-Derived Rigid Diol for Engineering Plastics. ChemSusChem 2015, 8, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Song, Z.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Ionic liquids for supercapacitive energy storage: A mini-review. Energy Fuels. 2021, 35, 8443–8455. [Google Scholar] [CrossRef]
- Yan, S.; Han, F.; Hou, Q.; Zhang, S.; Ai, S. Recent advances in ionic liquid-mediated SO2 capture. Ind. Eng. Chem. Res. 2019, 58, 13804–13818. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Luo, M.; Zhao, C.J.; Gu, C.B.; Zu, Y.G.; Fu, Y.J. Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid. Appl. Energy 2014, 115, 438–444. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, P.K.; Bhattacharya, B. Low-viscosity ionic liquid-doped solid polymer electrolytes: Electrical, dielectric, and ion transport studies. High Perform. Polym. 2018, 30, 986–992. [Google Scholar] [CrossRef]
- Zhao, X.D.; Guo, L.Y.; Xu, T.J.; Zheng, R.R.; Wang, H.Y. Preparation of Keggin-type monosubstituted polyoxometalate ionic liquid catalysts and their application in catalyzing the coupling reaction of ethylene carbonate and dimethyl succinate to synthesize poly (ethylene succinate). N. J. Chem. 2022, 46, 20092–20101. [Google Scholar] [CrossRef]
- Ma, C.; Xu, F.; Cheng, W.; Tan, X.; Su, Q.; Zhang, S.J. Tailoring molecular weight of bioderived polycarbonates via bifunctional ionic liquids catalysts under metal-free conditions. ACS Sustain. Chem. Eng. 2018, 6, 2684–2693. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Xu, F.; He, H.Y.; Ding, W.; Fang, W.J.; Sun, W.; Zhang, S. Synthesis of high-molecular weight isosorbide-based polycarbonates through efficient activation of endo-hydroxyl groups by an ionic liquid. Green Chem. 2019, 21, 3891–3901. [Google Scholar] [CrossRef]
- Peng, Q.H.; Wei, L.; Zhang, X.Y.; Wu, Y.; Mahmood, K.; Liu, Z.P.; Zhang, L.S. Direct polycondensation of l-lactic acid in hydrophobic bis (trifluoromethanesulfonyl) imide-anionic ionic liquids: A kinetic study. Eur. Polym. J. 2021, 158, 110692. [Google Scholar] [CrossRef]
- Zhao, X.D.; Guo, L.Y.; Xu, T.J.; Wang, H.Y.; Zheng, R.R.; Jiang, Z.Z. Preparation of biacidic tin-based ionic liquid catalysts and their application in catalyzing coupling reaction between ethylene carbonate and dimethyl succinate to synthesize poly (ethylene succinate). N. J. Chem. 2022, 46, 15901–15910. [Google Scholar] [CrossRef]
- Qu, X.L.; Jiang, M.; Wang, B.; Deng, J.; Wang, R.; Zhang, Q.; Tang, J. A Brønsted Acidic Ionic Liquid as an Efficient and Selective Catalyst System for Bioderived High Molecular Weight Poly (ethylene 2, 5-furandicarboxylate). ChemSusChem 2019, 12, 4927–4935. [Google Scholar] [CrossRef]
- GB/T 12005.1-1989; Determination of Limiting Viscosity Number of Polyacrylamide. ISO: Geneva, Switzerland, 1989.
- Xie, H.Z.; Wu, L.B.; Li, B.G.; Dubois, P. Biobased poly(ethylene-co-hexamethylene 2,5- furandicarboxylate) (PEHF) copolyesters with superior tensile properties. Ind. Eng. Chem. Res. 2018, 57, 13094–13102. [Google Scholar] [CrossRef]
No. | Catalyst | Conversion Rates/% | [η]/dL·g−1 |
---|---|---|---|
1 | — | 92.2 | 0.14 |
2 | DBU | 93.4 | 0.38 |
3 | (CH3COO)2Mn | 94.6 | 0.41 |
4 | [HO3S-(CH2)3-mim]-Cl | 93.1 | 0.35 |
5 | [HO3S-(CH2)3-mim]-SnCl5 | 94.1 | 0.39 |
6 | [DA-2PS][Cl]2 | 94.8 | 0.40 |
7 | [DA-2PS][ZnCl3]2 | 95.9 | 0.44 |
8 | [DA-2PS][MnCl3]2 | 95.5 | 0.42 |
9 | [DA-2PS][FeCl4]2 | 97.1 | 0.48 |
10 | [DA-2PS][SnCl5]2 | 97.8 | 0.50 |
11 | [DA-2PS][AlCl4]2 | 95.5 | 0.41 |
Run | Factor | [η]/dL·g−1 | |||
---|---|---|---|---|---|
Raw Material Ratio (A) N (EG)/n (FDCA) | Esterification Temperature (B) (°C) | Polycondensation Temperature (C) (°C) | Polycondensation Time (D) (h) | ||
1 | 1.6 | 190 | 240 | 6 | 0.55 |
2 | 2.4 | 190 | 240 | 6 | 0.51 |
3 | 1.6 | 230 | 240 | 6 | 0.58 |
4 | 2.4 | 230 | 240 | 6 | 0.53 |
5 | 2 | 210 | 230 | 5 | 0.35 |
6 | 2 | 210 | 250 | 5 | 0.34 |
7 | 2 | 210 | 230 | 7 | 0.51 |
8 | 2 | 210 | 250 | 7 | 0.50 |
9 | 1.6 | 210 | 240 | 5 | 0.35 |
10 | 2.4 | 210 | 240 | 5 | 0.30 |
11 | 1.6 | 210 | 240 | 7 | 0.51 |
12 | 2.4 | 210 | 240 | 7 | 0.47 |
13 | 2 | 190 | 230 | 6 | 0.55 |
14 | 2 | 230 | 230 | 6 | 0.58 |
15 | 2 | 190 | 250 | 6 | 0.54 |
16 | 2 | 230 | 250 | 6 | 0.58 |
17 | 1.6 | 210 | 230 | 6 | 0.47 |
18 | 2.4 | 210 | 230 | 6 | 0.52 |
19 | 1.6 | 210 | 250 | 6 | 0.55 |
20 | 2.4 | 210 | 250 | 6 | 0.37 |
21 | 2 | 190 | 240 | 5 | 0.33 |
22 | 2 | 230 | 240 | 5 | 0.36 |
23 | 2 | 190 | 240 | 7 | 0.50 |
24 | 2 | 230 | 240 | 7 | 0.53 |
25 | 2 | 210 | 240 | 6 | 0.64 |
26 | 2 | 210 | 240 | 6 | 0.65 |
27 | 2 | 210 | 240 | 6 | 0.66 |
28 | 2 | 210 | 240 | 6 | 0.65 |
29 | 2 | 210 | 240 | 6 | 0.65 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.3146 | 14 | 0.0225 | 51.65 | <0.0001 | significant |
A | 0.008 | 1 | 0.008 | 18.40 | 0.0007 | |
B | 0.0027 | 1 | 0.0027 | 6.21 | 0.0259 | |
C | 0.0008 | 1 | 0.0008 | 1.92 | 0.1881 | |
D | 0.0817 | 1 | 0.0817 | 187.71 | <0.0001 | |
AB | 0 | 1 | 0 | 0.0575 | 0.814 | |
AC | 0.0132 | 1 | 0.0132 | 30.39 | <0.0001 | |
AD | 0 | 1 | 0 | 0.0575 | 0.8140 | |
BC | 0 | 1 | 0 | 0.0575 | 0.8140 | |
BD | 0 | 1 | 0 | 0 | 1 | |
CD | 0 | 1 | 0 | 0 | 1 | |
A2 | 0.0473 | 1 | 0.0473 | 108.76 | <0.0001 | |
B2 | 0.0065 | 1 | 0.0065 | 14.95 | 0.0017 | |
C2 | 0.0288 | 1 | 0.0288 | 66.26 | <0.0001 | |
D2 | 0.1829 | 1 | 0.1829 | 420.33 | <0.0001 | |
Residual | 0.0061 | 14 | 0.0004 | |||
Lack of Fit | 0.0059 | 10 | 0.0006 | 11.78 | 0.0148 | significant |
Pure Error | 0.0002 | 4 | 0.0001 | |||
Cor Total | 0.3207 | 28 | ||||
R2 = 0.9810 | Adjusted R2 = 0.9620 |
Raw Material Ration (EG)/n (FDCA) | Esterification Temperature (°C) | Polycondensation Temperature (°C) | Polycondensation Time (h) | Predicted [η]/dL·g−1 | Actual [η]/dL·g−1 |
---|---|---|---|---|---|
1.962:1 | 219.864 | 240.038 | 6.300 | 0.67 | 0.66 |
0.70 | |||||
0.68 | |||||
average | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Zhao, Y.; Shi, Y.; Zheng, R.; Guo, L. Acidic Metal-Based Functional Ionic Liquids Catalyze the Synthesis of Bio-Based PEF Polyester. Polymers 2024, 16, 103. https://doi.org/10.3390/polym16010103
Zhou Q, Zhao Y, Shi Y, Zheng R, Guo L. Acidic Metal-Based Functional Ionic Liquids Catalyze the Synthesis of Bio-Based PEF Polyester. Polymers. 2024; 16(1):103. https://doi.org/10.3390/polym16010103
Chicago/Turabian StyleZhou, Qiao, Yuanyuan Zhao, Yafei Shi, Rongrong Zheng, and Liying Guo. 2024. "Acidic Metal-Based Functional Ionic Liquids Catalyze the Synthesis of Bio-Based PEF Polyester" Polymers 16, no. 1: 103. https://doi.org/10.3390/polym16010103
APA StyleZhou, Q., Zhao, Y., Shi, Y., Zheng, R., & Guo, L. (2024). Acidic Metal-Based Functional Ionic Liquids Catalyze the Synthesis of Bio-Based PEF Polyester. Polymers, 16(1), 103. https://doi.org/10.3390/polym16010103