A PVDF/g−C3N4-Based Composite Polymer Electrolytes for Sodium-Ion Battery
Abstract
:1. Introduction
2. Materials Preparation, Battery Assembly and Characterization Methods
2.1. Preparation of g−C3N4 Nanosheets
2.2. Preparation of g−C3N4 CSPE and Assembly of Coin Cell Battery
2.3. Characterization
2.4. Electrochemical Test
3. Results and Discussion
3.1. XRD Analysis
3.2. FTIR Spectra Analysis
3.3. Stress-Strain Tests
3.4. Thermal Stability Analysis
3.5. Morphology Analysis
3.6. The Electrochemical Characterization
3.7. Battery Performance Based on PVDF−HFP/g−C3N4/NaClO4 CSPE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource Analysis of Sodium-Ion Batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Zhao, Y.; Adair, K.R.; Sun, X. Recent Developments and Insights into the Understanding of Na Metal Anodes for Na-Metal Batteries. Energy Environ. Sci. 2018, 11, 2673–2695. [Google Scholar] [CrossRef]
- Yu, X.; Grundish, N.S.; Goodenough, J.B.; Manthiram, A. Ionic Liquid (IL) Laden Metal–Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Q.; Clites, M.; Byles, B.W.; Pomerantseva, E.; Li, C.Y. High-Capacity All-Solid-State Sodium Metal Battery with Hybrid Polymer Electrolytes. Adv. Energy Mater. 2018, 8, 1801885. [Google Scholar] [CrossRef]
- Isikli, S.; Ryan, K.M. Recent advances in solid-state polymer electrolytes and innovative ionic liquids based polymer electrolyte systems. Curr. Opin. Electrochem. 2020, 21, 188–191. [Google Scholar] [CrossRef]
- Martinez-Cisneros, C.S.; Pandit, B.; Levenfeld, B.; Varez, A.; Sanchez, J.-Y. Flexible solvent-free polymer electrolytes for solid-state Na batteries. J. Power Sources 2023, 559, 232644. [Google Scholar] [CrossRef]
- Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly(vinylidene fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef]
- Shanthi, P.M.; Hanumantha, P.J.; Albuquerque, T.; Gattu, B.; Kumta, P.N. Novel Composite Polymer Electrolytes of PVDF−HFP Derived by Electrospinning with Enhanced Li-Ion Conductivities for Rechargeable Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2018, 1, 483–494. [Google Scholar] [CrossRef]
- Mohamed, N.S.; Arof, A.K. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J. Power Sources 2004, 132, 229–234. [Google Scholar] [CrossRef]
- Sharma, S.; Pathak, D.; Dhiman, N.; Rajiv, K. Characterization of PVDF−HFP Based Nano-Composite Plasticized Polymer Electrolytes. Surf. Innov. 2017, 2017, 251–256. [Google Scholar] [CrossRef]
- Shen, Z.; Cheng, Y.; Sun, S.; Ke, X.; Liu, L.; Shi, Z. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy 2021, 3, 482–508. [Google Scholar] [CrossRef]
- Widstrom, M.D.; Ludwig, K.B.; Matthews, J.E.; Jarry, A.; Erdi, M.; Cresce, A.V.; Rubloff, G.; Kofinas, P. Enabling High Performance All-Solid-State Lithium Metal Batteries Using Solid Polymer Electrolytes Plasticized with Ionic Liquid. Electrochim. Acta 2020, 345, 136156. [Google Scholar] [CrossRef]
- Jayasekara, I.; Poyner, M.; Teeters, D. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte. Electrochim. Acta 2017, 247, 1147–1154. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T.; Wang, Z.; Yang, W.; Hu, C.; Luo, W.; Huang, Y. Graphitic Carbon Nitride (g−C3N4): An Interface Enabler for Solid-State Lithium Metal Batteries. Angew. Chem. Int. Ed. 2020, 59, 3699–3704. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Zhang, S.; Shi, L.; Wu, H.; Bu, H.; Ding, S. g−C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 2019, 7, 11069–11076. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhang, G.; Ma, A.; Chen, W.; Shao, L.; Shen, C.; Xie, K. High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation. Front. Chem. 2019, 7, 388. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, X.; Lin, W.; Si, Y.; Ji, K.; Wang, C.; Chen, M. Retarding Li dendrites growth via introducing porous g−C3N4 into polymer electrolytes for solid-state lithium metal batteries. J. Alloy. Compd. 2022, 909, 164825. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Hu, F.; Song, H. Structural and friction characteristics of g−C3N4/PVDF composites. Appl. Surf. Sci. 2015, 345, 349–354. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, S.; Zhou, K.; Wang, B.; Wang, B.; Gui, Z.; Hu, Y.; Yuen, R.K.K. Facile preparation of ZnS/g−C3N4 nanohybrids for enhanced optical properties. RSC Adv. 2014, 4, 2609–2613. [Google Scholar] [CrossRef]
- Aravindan, V.; Vickraman, P.; Kumar, T.P. Polyvinylidene fluoride–hexafluoropropylene (PVDF–HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. J. Non-Cryst. Solids 2008, 354, 3451–3457. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, J.; Guo, Y.; Zhu, H.; Huang, X. Research Progress on Na3V2(PO4)3 Cathode Material of Sodium Ion Battery. Front. Chem. 2020, 8, 635. [Google Scholar] [CrossRef]
- Akçay, T.; Häringer, M.; Pfeifer, K.; Anhalt, J.; Binder, J.R.; Dsoke, S.; Kramer, D.; Mönig, R. Na3V2(PO4)3─A Highly Promising Anode and Cathode Material for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 12688–12695. [Google Scholar] [CrossRef]
- Xie, D.H.; Zhang, M.; Wu, Y.; Xiang, L.; Tang, Y.B. A Flexible Dual-Ion Battery Based on Sodium-Ion Quasi-Solid-State Electrolyte with Long Cycling Life. Adv. Funct. Mater. 2020, 30, 1906770. [Google Scholar] [CrossRef]
- Badatya, S.; Kumar, A.; Sharma, C.; Srivastava, A.K.; Chaurasia, J.P.; Gupta, M.K. Transparent flexible graphene quantum dot-(PVDF−HFP) piezoelectric nanogenerator. Mater. Lett. 2021, 290, 129493. [Google Scholar] [CrossRef]
- Roy, J.; Chikkonda, R.; Kishor, G.; Thankamani Sathyanathan, A.R.; Raju, K.C.J.; Gangineni, R.B.J. Structural, microstructural, and ferroelectric studies of polyvinylidene fluoride-hexafluoropropylene (PVDF−HFP) thin films in Ag/Cu/PVDF−HFP/Cu capacitor structures. Appl. Polym. Sci. 2022, 139, e52187. [Google Scholar] [CrossRef]
- Alexander, L.; Klug, H.P. Determination of Crystallite Size with the X-Ray Spectrometer. J. Appl. Phys. 1950, 21, 137–142. [Google Scholar] [CrossRef]
- Zak, A.K.; Majid, W.H.A.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Jiang, S.; Zhou, K.; Bao, C.; Yu, B.; Qian, X.; Wang, B.; Hong, N.; Wen, P.; Gui, Z.; et al. Influence of g−C3N4 Nanosheets on Thermal Stability and Mechanical Properties of Biopolymer Electrolyte Nanocomposite Films: A Novel Investigation. ACS Appl. Mater. Interfaces 2014, 6, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Tian, J.; Li, C. Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte to Enable Dendrite-Suppressed Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2017, 9, 11615–11625. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, Y.; Yao, P.; Ding, Z.; Tang, Q.; Wu, J.; Ye, Z.; Huang, K.; Liu, X. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem. Eng. J. 2019, 367, 230–238. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Xie, H.; Zheng, W.; Zhang, K. Graphitic Carbon Nitride Assisted PVDF−HFP Based Solid Electrolyte to Realize High Performance Solid-State Lithium Metal Batteries. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130520. [Google Scholar] [CrossRef]
- Kim, J.S.; Lim, J.K. Mechanical properties and interfacial compatibility of functionalized carbon nanotubes as fillers for chitosan solid polymer electrolytes. React. Funct. Polym. 2021, 166, 105013. [Google Scholar] [CrossRef]
- Hu, J.; Chen, K.; Yao, Z.; Li, C. Unlocking Solid-State Conversion Batteries Reinforced by Hierarchical Microsphere Stacked Polymer Electrolyte. Sci. Bull. 2021, 66, 694–707. [Google Scholar] [CrossRef]
- Zhang, X.; Rui, X.; Chen, D.; Tan, H.; Yang, D.; Huang, S.; Yu, Y. Na3V2(PO4)3: An advanced cathode for sodium-ion batteries. Nanoscale 2019, 11, 2556–2576. [Google Scholar] [CrossRef]
- Gao, R.; Tan, R.; Han, L.; Zhao, Y.; Wang, Z.; Yang, L.; Pan, F. Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J. Mater. Chem. A 2017, 5, 5273–5277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, K.; Zhou, J.; Wu, X.; Liu, X.; Sun, L.; Wang, Y.; Tian, S.; Niu, H.; Duan, Y.; Hu, G.; et al. A PVDF/g−C3N4-Based Composite Polymer Electrolytes for Sodium-Ion Battery. Polymers 2023, 15, 2006. https://doi.org/10.3390/polym15092006
Shu K, Zhou J, Wu X, Liu X, Sun L, Wang Y, Tian S, Niu H, Duan Y, Hu G, et al. A PVDF/g−C3N4-Based Composite Polymer Electrolytes for Sodium-Ion Battery. Polymers. 2023; 15(9):2006. https://doi.org/10.3390/polym15092006
Chicago/Turabian StyleShu, Kewei, Jiazhen Zhou, Xiaojing Wu, Xuan Liu, Liyu Sun, Yu Wang, Siyu Tian, Huizhu Niu, Yihao Duan, Guangyu Hu, and et al. 2023. "A PVDF/g−C3N4-Based Composite Polymer Electrolytes for Sodium-Ion Battery" Polymers 15, no. 9: 2006. https://doi.org/10.3390/polym15092006
APA StyleShu, K., Zhou, J., Wu, X., Liu, X., Sun, L., Wang, Y., Tian, S., Niu, H., Duan, Y., Hu, G., & Wang, H. (2023). A PVDF/g−C3N4-Based Composite Polymer Electrolytes for Sodium-Ion Battery. Polymers, 15(9), 2006. https://doi.org/10.3390/polym15092006