Multiscale Analysis of the Highly Stretchable Carbon−Based Polymer Strain Sensor
Abstract
:1. Introduction
2. Methods
2.1. Establishment of the RVE Model
- a.
- Randomly generate the 3D coordinates (,,) and radius r1 of the first aggregate.
- b.
- Randomly generate the distance d12, azimuth φ, and elevation θ, and the coordinates of the second aggregate (,,) can be derived by
- c.
- Generate more aggregates in the vicinity of the first aggregate.
- d.
- Repeat the previous steps until the desired volume fraction is reached.
2.2. Conductive Mechanism of CNPs−Filled Polymer
3. Simulation
4. Verification of the Method
4.1. Materials
4.2. Uniaxial Tensile Test
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, Z.; Lin, R.; Tran, V.-T.; An, J.; Wei, Y.; Du, H.; Tran, T.; Lu, W. Paper/Carbon Nanotube−Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin. ACS Appl. Mater. Interfaces 2017, 9, 37921–37928. [Google Scholar] [CrossRef] [PubMed]
- Tee, B.C.K.; Chortos, A.; Berndt, A.; Nguyen, A.K.; Tom, A.; McGuire, A.; Lin, Z.C.; Tien, K.; Bae, W.-G.; Wang, H.; et al. A skin−inspired organic digital mechanoreceptor. Science 2015, 350, 313–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekry, A.M.; Abdel−Gawad, S.A.; Tammam, R.H.; Zayed, M.A. An electrochemical sensor for creatinine based on carbon nanotubes/folic acid/silver nanoparticles modified electrode. Measurement 2020, 163, 107958. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Y.; Guo, C.F. Recent progresses on flexible tactile sensors. Mater. Today Phys. 2017, 1, 61–73. [Google Scholar] [CrossRef]
- Haridas, A.C.; Sharma, S.; Naskar, K.; Mondal, T. Cross−Talk Signal Free Recyclable Thermoplastic Polyurethane/Graphene−Based Strain and Pressure Sensor for Monitoring Human Motions. ACS Appl. Mater. Interfaces 2023. [Google Scholar] [CrossRef]
- Yellapantula, K.; Devaraj, H.; Assadian, M.; Stuart, L.; Lo, C.-Y.; Gan, W.C.; Aw, K. Soft and flexible sensor array using carbon black pillars for object recognition via pressure mapping. Measurement 2020, 159, 107781. [Google Scholar] [CrossRef]
- Devaraj, H.; Schober, R.; Picard, M.; Teo, M.Y.; Lo, C.-Y.; Gan, W.C.; Aw, K.C. Highly elastic and flexible multi−layered carbon black/elastomer composite based capacitive sensor arrays for soft robotics. Meas. Sens. 2019, 2, 100004. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, X.; Fan, D.; Zhou, P.; Luo, Y.; Zhang, X. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications. Compos. Commun. 2021, 25, 100685. [Google Scholar] [CrossRef]
- Song, P.; Wang, G.; Zhang, Y. Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sens. Actuators A Phys. 2021, 323, 112659. [Google Scholar] [CrossRef]
- Al mufadi, F. Measurement of fluid flow rate using nanocomposite silicone rubber sensor. Flow Meas. Instrum. 2021, 78, 101885. [Google Scholar] [CrossRef]
- Lugoda, P.; Costa, J.C.; Garcia−Garcia, L.A.; Pouryazdan, A.; Jocys, Z.; Spina, F.; Salvage, J.; Roggen, D.; Munzenrieder, N. Coco Stretch: Strain Sensors Based on Natural Coconut Oil and Carbon Black Filled Elastomers. Adv. Mater. Technol. 2021, 6, 202000780. [Google Scholar] [CrossRef]
- Yulianti, R.T.; Irmawati, Y.; Destyorini, F.; Ghozali, M.; Suhandi, A.; Kartolo, S.; Hardiansyah, A.; Byun, J.-H.; Fauzi, M.H.; Yudianti, R. Highly Stretchable and Sensitive Single−Walled Carbon Nanotube−Based Sensor Decorated on a Polyether Ester Urethane Substrate by a Low Hydrothermal Process. ACS Omega 2021, 6, 34866–34875. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Pötschke, P.; Pionteck, J.; Li, Y.; Formanek, P.; Voit, B. Tuning the piezoresistive behavior of poly (vinylidene fluoride)/carbon nanotube composites using poly (methyl methacrylate). ACS Appl. Mater. Interfaces 2020, 12, 43125–43137. [Google Scholar] [CrossRef]
- Surya, K.P.; Sharma, S.; Mondal, T.; Naskar, K.; Bhowmick, A.K. Thermally Conductive Durable Strain Sensors for Next−Generation Intelligent Tires from Natural Rubber Nanocomposites. Rubber Chem. Technol. 2023. [Google Scholar] [CrossRef]
- Kost, J.; Foux, A.; Narkis, M. Quantitative model relating electrical resistance, strain, and time for carbon black loaded silicone rubber. Polym. Eng. Sci. 1994, 34, 1628–1634. [Google Scholar] [CrossRef]
- Wang, L.; Ding, T.; Wang, P. Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation. Compos. Sci. Technol. 2008, 68, 3448–3450. [Google Scholar] [CrossRef]
- Xie, Z.; Yum, Y.-J.; Lee, C.-K. Simulation of electrical resistivity of carbon black filled rubber under elongation. J. Macromol. Sci. Part B Phys. 2007, 46, 561–567. [Google Scholar] [CrossRef]
- Lu, X.; Yvonnet, J.; Detrez, F.; Bai, J. Multiscale modeling of nonlinear electric conductivity in graphene−reinforced nanocomposites taking into account tunnelling effect. J. Comput. Phys. 2017, 337, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Tserpes, K.; Kora, C. A multi−scale modeling approach for simulating crack sensing in polymer fibrous composites using electrically conductive carbon nanotube networks. Part I: Micro−scale analysis. Comput. Mater. Sci. 2018, 154, 530–537. [Google Scholar] [CrossRef]
- Sharma, S.; Selvan, M.T.; Naskar, S.; Mondal, S.; Adhya, P.; Mukhopadhyay, T.; Mondal, T. Printable Graphene−Sustainable Elastomer−Based Cross Talk Free Sensor for Point of Care Diagnostics. ACS Appl. Mater. Interfaces 2022, 14, 57265–57280. [Google Scholar] [CrossRef]
- Selvan, T.M.; Sharma, S.; Naskar, S.; Mondal, S.; Kaushal, M.; Mondal, T. Printable Carbon Nanotube−Liquid Elastomer−Based Multifunctional Adhesive Sensors for Monitoring Physiological Parameters. ACS Appl. Mater. Interfaces 2022, 14, 45921–45933. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.A.S.; Tagarielli, V.L.; Baiz−Villafranca, P.M.; Pinho, S.T. Predictions of the electro−mechanical response of conductive CNT−polymer composites. J. Mech. Phys. Solids 2018, 114, 84–96. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, L.; Yao, X.; Fang, D. Piezoresistive response of graphene rubber composites considering the tunneling effect. J. Mech. Phys. Solids 2020, 139, 103943. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Zhang, C.; Yu, W. The electro−mechanical behavior of conductive filler reinforced polymer composite undergone large deformation: A combined numerical−analytical study. Compos. Part B Eng. 2018, 133, 185–192. [Google Scholar] [CrossRef]
- Akutagawa, K.; Yamaguchi, K.; Yamamoto, A.; Heguri, H.; Jinnai, H.; Shinbori, Y. Mesoscopic Mechanical Analysis of Filled Elastomer with 3D−Finite Element Analysis and Transmission Electron Microtomography. Rubber Chem. Technol. 2008, 81, 182–189. [Google Scholar] [CrossRef]
- Tomita, Y.; Lu, W.; Naito, M.; Furutani, Y. Numerical evaluation of micro− to macroscopic mechanical behavior of carbon−black−filled rubber. Int. J. Mech. Sci. 2006, 48, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Segurado, J.; Llorca, J. A numerical approximation to the elastic properties of sphere−reinforced composites. J. Mech. Phys. Solids 2002, 50, 2107–2121. [Google Scholar] [CrossRef]
- Vaughan, T.J.; McCarthy, C.T. A combined experimental–numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos. Sci. Technol. 2010, 70, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Dai, Y.; Zhang, C.; Gao, X.; Zhao, M. Micromechanical Modeling of Fiber−Reinforced Composites with Statistically Equivalent Random Fiber Distribution. Materials 2016, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef] [Green Version]
- Zulkarnain, M.; Hilmi, R.A.A.M.; Husaini, A.B.M.; Mariatti, M.; Azid, I.A. Predicting the RVE size of micro−particle composite for electrical purpose using particles dispersion developed. Microsyst. Technol.-Micro-Nanosyst.-Inf. Storage Process. Syst. 2016, 22, 287–296. [Google Scholar] [CrossRef]
- Renaud, C.; Cros, J.M.; Feng, Z.Q.; Yang, B. The Yeoh model applied to the modeling of large deformation contact/impact problems. Int. J. Impact Eng. 2009, 36, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Derrida, B.; Vannimenus, J. A transfer−matrix approach to random resistor networks. J. Phys. A Math. Gen. 1982, 15, 557–564. [Google Scholar] [CrossRef]
CNPs | Diameter (nm) | Density (kg/m3) | Surface Area (m2/g) | DBP Absorption (cm3/100 g) |
---|---|---|---|---|
EC−600JD | 30 | 110 | 1400 | 510 |
EC−300J | 50 | 130 | 800 | 380 |
Young’s Modulus (MPa) | Density (kg/m3) | Tensile Strength (Mpa) | Elongation at Break (%) |
---|---|---|---|
0.85 | 980 | 1.6 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Z.; Zuo, Y.; Wang, W. Multiscale Analysis of the Highly Stretchable Carbon−Based Polymer Strain Sensor. Polymers 2023, 15, 1780. https://doi.org/10.3390/polym15071780
Wang J, Wang Z, Zuo Y, Wang W. Multiscale Analysis of the Highly Stretchable Carbon−Based Polymer Strain Sensor. Polymers. 2023; 15(7):1780. https://doi.org/10.3390/polym15071780
Chicago/Turabian StyleWang, Junpu, Zhu Wang, Yanjiang Zuo, and Wenzhi Wang. 2023. "Multiscale Analysis of the Highly Stretchable Carbon−Based Polymer Strain Sensor" Polymers 15, no. 7: 1780. https://doi.org/10.3390/polym15071780
APA StyleWang, J., Wang, Z., Zuo, Y., & Wang, W. (2023). Multiscale Analysis of the Highly Stretchable Carbon−Based Polymer Strain Sensor. Polymers, 15(7), 1780. https://doi.org/10.3390/polym15071780