Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement Method
3. Results and Discussion
3.1. Selection of Flame Retardant Type and Mixing Ratio
3.2. Coating Growth Curve of One-Component Flame Retardants
3.3. Mechanical Properties and Flame Retardant Properties of One-Component Flame Retardants
3.4. Two-Component Mixing of RP and ATH
3.5. Performance Test of The Mixed System of ATH 20 wt.% and Microencapsulated RP 10 wt.%
3.6. Preparation of Large-Area Flame-Retardant Coating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, W.; Chen, L.; Gu, Z.; Jiang, J. Influence of graphene on fire protection of intumescent fire retardant coating for steel structure. Energy Rep. 2020, 6, 693–697. [Google Scholar] [CrossRef]
- Bhoite, S.P.; Kim, J.; Jo, W.; Bhoite, P.H.; Mali, S.S.; Park, K.-H.; Hong, C.-K. Expanded Polystyrene Beads Coated with Intumescent Flame Retardant Material to Achieve Fire Safety Standards. Polymers 2021, 13, 2662. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huo, S.; Liu, S.; Hu, Q.; Zhang, Q.; Liu, Z. Recycle of magnesium alloy scrap for improving fire resistance, thermal stability, and water tolerance of intumescent fire-retardant coatings. J. Coat. Technol. Res. 2021, 18, 447–458. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, J.; Yuan, W.; Yan, J.; Wang, L.; Liang, D. Experimental Study on Delaying the Failure Time of In-Service Cables in Trays by Using Fire-Retardant Coatings. Appl. Sci. 2021, 11, 2521. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Z.; Zhang, Z.; Ning, H.; Wang, Y. Graphene oxide nanosheets decorated with MgAlCr-layered double hydroxide nanosheets as flame retardant coatings for steel. ACS Appl. Nano Mater. 2021, 4, 8241–8250. [Google Scholar] [CrossRef]
- Szymiczek, M.; Buła, D. Polyester and epoxy resins with increased thermal conductivity and reduced surface resistivity for applications in explosion-proof enclosures of electrical devices. Materials 2022, 15, 2171. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; He, S. Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability. ACS Omega 2020, 5, 4100–4108. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, C.; Yu, H.; Li, X. Preparation of a wear-resistant, superhydrophobic SiO2/silicone-modified polyurethane composite coating through a two-step spraying method. Prog. Org. Coat. 2020, 146, 105710. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.; Ma, Z. Study on Non-Destructive Reinforcing Material of Modified One Component Polyurethane for Tunnel Crack Disease Prevention. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1028, p. 012013. [Google Scholar]
- Ye, W.; Won, D.; Zhang, X. A practical method and its applications to prioritize volatile organic compounds emitted from building materials based on ventilation rate requirements and ozone-initiated reactions. Indoor Built Environ. 2017, 26, 166–184. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Yan, Y.; Liu, T.; Lv, T.; Chen, Y.; Yang, J.; Die, Q.; Zhao, Y.; Huang, Q. Characterizing the emission behaviors of cumulative VOCs from automotive solvent-based paint sludge. J. Environ. Manag. 2022, 317, 115369. [Google Scholar] [CrossRef]
- Rawat, M.; Ahuja, S. Design of water-based polyvinyl alcohol coatings using a drying modifier to minimize the residual solvent and coating defects. Iran. Polym. J. 2022, 31, 441–453. [Google Scholar] [CrossRef]
- Kugimoto, Y.; Wakabayashi, A.; Dobashi, T.; Ohnishi, O.; Doi, T.K.; Kurokawa, S. Preparation and characterization of composite coatings containing a quaternary ammonium salt as an anti-static agent. Prog. Org. Coat. 2016, 92, 80–84. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2021, 34, 2107905. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Song, L.; Hu, Y. A review on flame retardant technology in China. Part II: Flame retardant polymeric nanocomposites and coatings. Polym. Adv. Technol. 2011, 22, 379–394. [Google Scholar] [CrossRef]
- Hamidov, M.; Çakmakçi, E.; Kahraman, M.V. Autocatalytic reactive flame retardants for rigid polyurethane foams. Mater. Chem. Phys. 2021, 267, 124636. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Li, Y.; Sun, J. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 2015, 9, 4070–4076. [Google Scholar] [CrossRef] [PubMed]
- Bar, M.; Alagirusamy, R.; Das, A. Flame retardant polymer composites. Fibers Polym. 2015, 16, 705–717. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, S.; Zhao, Y.; Tao, W.; Yu, X. Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. J. Mater. Sci. 2021, 56, 9605–9643. [Google Scholar] [CrossRef]
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Schartel, B. Phosphorus-based flame retardancy mechanisms–Old hat or a starting point for future development. Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef]
- Boryniec, S.; Przygocki, W. Polymer combustion processes. 3. Flame retardants for polymeric materials. Prog. Rubber Plast. Technol. 2001, 17, 127–148. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Di Cortemiglia, M.P.L. Overview of fire retardant mechanisms. Polym. Degrad. Stab. 1991, 33, 131–154. [Google Scholar] [CrossRef]
- Wang, D.; Ge, X.; Nie, H.; Yao, Z.; Zhang, J. Demulsification-induced fast solidification: A novel strategy for the preparation of polymer films. Chem. Commun. 2019, 55, 9192–9195. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular firefighting–How modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467. [Google Scholar] [CrossRef] [PubMed]
- Camino, G.; Maffezzoli, A.; Braglia, M.; De Lazzaro, M.; Zammarano, M. Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym. Degrad. Stab. 2001, 74, 457–464. [Google Scholar] [CrossRef]
- Rong, X.; Wang, Z.; Xing, X.; Zhao, L. Review on the adhesion of geopolymer coatings. ACS Omega 2021, 6, 5108–5112. [Google Scholar] [CrossRef]
Instrument | Model | Manufacturer | City/ Country of Origin |
---|---|---|---|
Limiting oxygen index test apparatus | LX–4328 | AISRY | Dongguan/China |
Paint film impact tester | QCJ–100 | Tianjin Kexin | Hangzhou/China |
Electric paint film adhesion tester | QFD | Tianjin Shibo Weiye Chemical Glass Instrument | Guangzhou/China |
Rotational viscometer | NDJ–5S | Shanghai Fangrui Instrument | Shanghai /China |
Flame Retardant | wt.% | Adhesion Grade | Impact (cm) | LOI (%) |
---|---|---|---|---|
ATH | 10 | ×* | 100 | --* |
ATH | 20 | × | 100 | 29.90 |
ATH | 30 | × | 100 | -- |
ATH | 40 | × | 100 | 39.30 |
ATH | 50 | × | 100 | -- |
RP | 10 | 3 | 100 | -- |
RP | 20 | 3 | 100 | 26.40 |
RP | 30 | 3 | 100 | 35.10 |
Electrode Material | Adhesion | Impact | LOI |
---|---|---|---|
Zinc sheet | Grade 3 | 100 cm | 30.4% |
Galvanized iron sheet | Grade 3 | 100 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, J.; Pan, X.; Zhao, M.; Zhang, J. Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers. Polymers 2023, 15, 754. https://doi.org/10.3390/polym15030754
Wang Y, Liu J, Pan X, Zhao M, Zhang J. Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers. Polymers. 2023; 15(3):754. https://doi.org/10.3390/polym15030754
Chicago/Turabian StyleWang, Yaokai, Jinfang Liu, Xu Pan, Min Zhao, and Jianfu Zhang. 2023. "Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers" Polymers 15, no. 3: 754. https://doi.org/10.3390/polym15030754
APA StyleWang, Y., Liu, J., Pan, X., Zhao, M., & Zhang, J. (2023). Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers. Polymers, 15(3), 754. https://doi.org/10.3390/polym15030754