Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement Method
3. Results and Discussion
3.1. Selection of Flame Retardant Type and Mixing Ratio
3.2. Coating Growth Curve of One-Component Flame Retardants
3.3. Mechanical Properties and Flame Retardant Properties of One-Component Flame Retardants
3.4. Two-Component Mixing of RP and ATH
3.5. Performance Test of The Mixed System of ATH 20 wt.% and Microencapsulated RP 10 wt.%
3.6. Preparation of Large-Area Flame-Retardant Coating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, W.; Chen, L.; Gu, Z.; Jiang, J. Influence of graphene on fire protection of intumescent fire retardant coating for steel structure. Energy Rep. 2020, 6, 693–697. [Google Scholar] [CrossRef]
- Bhoite, S.P.; Kim, J.; Jo, W.; Bhoite, P.H.; Mali, S.S.; Park, K.-H.; Hong, C.-K. Expanded Polystyrene Beads Coated with Intumescent Flame Retardant Material to Achieve Fire Safety Standards. Polymers 2021, 13, 2662. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huo, S.; Liu, S.; Hu, Q.; Zhang, Q.; Liu, Z. Recycle of magnesium alloy scrap for improving fire resistance, thermal stability, and water tolerance of intumescent fire-retardant coatings. J. Coat. Technol. Res. 2021, 18, 447–458. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, J.; Yuan, W.; Yan, J.; Wang, L.; Liang, D. Experimental Study on Delaying the Failure Time of In-Service Cables in Trays by Using Fire-Retardant Coatings. Appl. Sci. 2021, 11, 2521. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Z.; Zhang, Z.; Ning, H.; Wang, Y. Graphene oxide nanosheets decorated with MgAlCr-layered double hydroxide nanosheets as flame retardant coatings for steel. ACS Appl. Nano Mater. 2021, 4, 8241–8250. [Google Scholar] [CrossRef]
- Szymiczek, M.; Buła, D. Polyester and epoxy resins with increased thermal conductivity and reduced surface resistivity for applications in explosion-proof enclosures of electrical devices. Materials 2022, 15, 2171. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; He, S. Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability. ACS Omega 2020, 5, 4100–4108. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, C.; Yu, H.; Li, X. Preparation of a wear-resistant, superhydrophobic SiO2/silicone-modified polyurethane composite coating through a two-step spraying method. Prog. Org. Coat. 2020, 146, 105710. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.; Ma, Z. Study on Non-Destructive Reinforcing Material of Modified One Component Polyurethane for Tunnel Crack Disease Prevention. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1028, p. 012013. [Google Scholar]
- Ye, W.; Won, D.; Zhang, X. A practical method and its applications to prioritize volatile organic compounds emitted from building materials based on ventilation rate requirements and ozone-initiated reactions. Indoor Built Environ. 2017, 26, 166–184. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Yan, Y.; Liu, T.; Lv, T.; Chen, Y.; Yang, J.; Die, Q.; Zhao, Y.; Huang, Q. Characterizing the emission behaviors of cumulative VOCs from automotive solvent-based paint sludge. J. Environ. Manag. 2022, 317, 115369. [Google Scholar] [CrossRef]
- Rawat, M.; Ahuja, S. Design of water-based polyvinyl alcohol coatings using a drying modifier to minimize the residual solvent and coating defects. Iran. Polym. J. 2022, 31, 441–453. [Google Scholar] [CrossRef]
- Kugimoto, Y.; Wakabayashi, A.; Dobashi, T.; Ohnishi, O.; Doi, T.K.; Kurokawa, S. Preparation and characterization of composite coatings containing a quaternary ammonium salt as an anti-static agent. Prog. Org. Coat. 2016, 92, 80–84. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2021, 34, 2107905. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Song, L.; Hu, Y. A review on flame retardant technology in China. Part II: Flame retardant polymeric nanocomposites and coatings. Polym. Adv. Technol. 2011, 22, 379–394. [Google Scholar] [CrossRef]
- Hamidov, M.; Çakmakçi, E.; Kahraman, M.V. Autocatalytic reactive flame retardants for rigid polyurethane foams. Mater. Chem. Phys. 2021, 267, 124636. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Li, Y.; Sun, J. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 2015, 9, 4070–4076. [Google Scholar] [CrossRef] [PubMed]
- Bar, M.; Alagirusamy, R.; Das, A. Flame retardant polymer composites. Fibers Polym. 2015, 16, 705–717. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, S.; Zhao, Y.; Tao, W.; Yu, X. Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. J. Mater. Sci. 2021, 56, 9605–9643. [Google Scholar] [CrossRef]
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Schartel, B. Phosphorus-based flame retardancy mechanisms–Old hat or a starting point for future development. Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef] [Green Version]
- Boryniec, S.; Przygocki, W. Polymer combustion processes. 3. Flame retardants for polymeric materials. Prog. Rubber Plast. Technol. 2001, 17, 127–148. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Di Cortemiglia, M.P.L. Overview of fire retardant mechanisms. Polym. Degrad. Stab. 1991, 33, 131–154. [Google Scholar] [CrossRef]
- Wang, D.; Ge, X.; Nie, H.; Yao, Z.; Zhang, J. Demulsification-induced fast solidification: A novel strategy for the preparation of polymer films. Chem. Commun. 2019, 55, 9192–9195. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular firefighting–How modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467. [Google Scholar] [CrossRef] [PubMed]
- Camino, G.; Maffezzoli, A.; Braglia, M.; De Lazzaro, M.; Zammarano, M. Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym. Degrad. Stab. 2001, 74, 457–464. [Google Scholar] [CrossRef]
- Rong, X.; Wang, Z.; Xing, X.; Zhao, L. Review on the adhesion of geopolymer coatings. ACS Omega 2021, 6, 5108–5112. [Google Scholar] [CrossRef]
Instrument | Model | Manufacturer | City/ Country of Origin |
---|---|---|---|
Limiting oxygen index test apparatus | LX–4328 | AISRY | Dongguan/China |
Paint film impact tester | QCJ–100 | Tianjin Kexin | Hangzhou/China |
Electric paint film adhesion tester | QFD | Tianjin Shibo Weiye Chemical Glass Instrument | Guangzhou/China |
Rotational viscometer | NDJ–5S | Shanghai Fangrui Instrument | Shanghai /China |
Flame Retardant | wt.% | Adhesion Grade | Impact (cm) | LOI (%) |
---|---|---|---|---|
ATH | 10 | ×* | 100 | --* |
ATH | 20 | × | 100 | 29.90 |
ATH | 30 | × | 100 | -- |
ATH | 40 | × | 100 | 39.30 |
ATH | 50 | × | 100 | -- |
RP | 10 | 3 | 100 | -- |
RP | 20 | 3 | 100 | 26.40 |
RP | 30 | 3 | 100 | 35.10 |
Electrode Material | Adhesion | Impact | LOI |
---|---|---|---|
Zinc sheet | Grade 3 | 100 cm | 30.4% |
Galvanized iron sheet | Grade 3 | 100 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, J.; Pan, X.; Zhao, M.; Zhang, J. Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers. Polymers 2023, 15, 754. https://doi.org/10.3390/polym15030754
Wang Y, Liu J, Pan X, Zhao M, Zhang J. Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers. Polymers. 2023; 15(3):754. https://doi.org/10.3390/polym15030754
Chicago/Turabian StyleWang, Yaokai, Jinfang Liu, Xu Pan, Min Zhao, and Jianfu Zhang. 2023. "Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers" Polymers 15, no. 3: 754. https://doi.org/10.3390/polym15030754