Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Geopolymer Synthesis
- −
- Mixing the dry powder with the activating solution at low speed for 10 min;
- −
- Mixing the geopolymer paste with and without the acridine orange at high speed for 10 min. The mixture details are given in Table 2.
2.3. Geopolymer Characterization
2.3.1. Chemical Stability
2.3.2. FT-IR
2.3.3. XRD
2.3.4. SEM
2.3.5. TGA/DTG
2.3.6. Flexural Strength
2.3.7. Compressive Strength
2.3.8. Antimicrobial Analysis
- i.
- For media preparation, Tryptone Bile X-Gluc (TBX) Medium powder was dissolved in deionized water and autoclaved at 120 °C for 15 min. After cooling at 50 °C, the media was poured into Petri dishes, PD (6 cm in diameter), and stored at 4 °C before use. Baird–Parker Agar (BPA) powder was prepared following the same procedure as the TBX Medium. Before pouring into Petri dishes, the egg yolk supplement, containing potassium tellurite, was added to the BPA. Both bacterial media were purchased from Liofilchem, Roseto Degli Abruzzi, Italy.
- ii.
- For sample preparation, 150 mg of MK, GP, and GPAO powders were pressed to obtain sample disks that were sterilized under UV light for 1 h.
- iii.
- For bacterial strain preparation, S. aureus and E. coli bacterial strain pellets were dissolved in saline sterilized water (0.9% of NaCl), obtaining bacterial suspensions of 109 CFU/mL. After the dissolution, E. coli was plated on TBX Medium, while the S. aureus was plated on BPA.
- iv.
- For bacterial incubation, after bacterial plating, the sterilized samples were put in the centre of Petri dishes and incubated within the bacteria. E. coli was incubated at 44 °C for 24 h, while S. aureus was incubated at 36 °C for 24 h.
- v.
- For IHD and BV measurement, four measurements of IHD were taken for each Petri dish to obtain both the mean and standard deviation. Bacterial viability (BV %) was calculated following Equation (2) as reported in [37]:
2.3.9. UV-Vis Analysis
3. Results
3.1. Sample Characterization
3.2. FT-IR Characterization
3.3. XRD
3.4. SEM
3.5. TGA/DTG
3.6. Flexural Strength
3.7. Antimicrobial Analysis
3.8. UV-Vis Analysis and Release Study
4. Discussion
5. Conclusions
- FT-IR revealed the presence of the AO in GPAO and the occurrence of geopolymerization (DOSPM shift at lower wavenumbers), supported also by the XRD analysis (see the amorphous hump shift to the range 20–40° 2θ).
- The physical-chemical properties (analyzed through pH and IC, and weight loss and integrity tests) of the samples revealed no huge differences between GP and GPAO. These indirect data on the stability of both samples were also strengthened by the TGA/DTG and SEM analyses.
- The slight decrease in mechanical and flexural strengths of GPAO with respect to GP could be explained by the formation of some pores during solvent evaporation from the viscous fresh paste.
- The UV-Vis spectrum of AO extracted from GPAO supported that the alkaline environment required for the geopolymerization did not degrade the organic dye, which was also retained without being released (concentration of AO released in water lower than the LOD of titration curve).
- The investigation of the antimicrobial activity of GP and GPAO revealed increased activity of the specimens with acridine orange against E. coli and S. aureus bacterial strains probably due to the very low amount of dye release.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. Understanding the Relationship between Geopolymer Composition, Microstructure and Mechanical Properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. Quantitative Kinetic and Structural Analysis of Geopolymers. Part 1. The Activation of Metakaolin with Sodium Hydroxide. Thermochim. Acta 2012, 539, 23–33. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Lameiras, F.S. Mix Design Formulation Range for Metakaolin-Based Geopolymer Synthesis. REM Int. Eng. J. 2022, 75, 225–234. [Google Scholar] [CrossRef]
- Provis, J.L.; Duxson, P.; Lukey, G.C.; van Deventer, J.S.J. Statistical Thermodynamic Model for Si/Al Ordering in Amorphous Aluminosilicates. Chem. Mater. 2005, 17, 2976–2986. [Google Scholar] [CrossRef]
- Weng, L.; Sagoe-Crentsil, K. Dissolution Processes, Hydrolysis and Condensation Reactions during Geopolymer Synthesis: Part I—Low Si/Al Ratio Systems. J. Mater. Sci. 2007, 42, 2997–3006. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 2017, 8, 335–350. [Google Scholar]
- Tian, Q.; Bai, Y.; Pan, Y.; Chen, C.; Yao, S.; Sasaki, K.; Zhang, H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules 2022, 27, 4570. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Ellatief, M.A.; Heneigel, A.M.; Elrahman, M.A. Characteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceram. Int. 2022, 48, 19662–19674. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, P.; Wang, J.; Wang, K.; Zhang, T. Interfacial properties of geopolymer mortar and concrete substrate: Effect of polyvinyl alcohol fiber and nano-SiO2 contents. Constr. Build. Mater. 2022, 315, 125735. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, S.; Zheng, Y.; Wang, F.; Hu, S. Effect of Single and Synergistic Reinforcement of PVA Fiber and Nano-SiO2 on Workability and Compressive Strength of Geopolymer Composites. Polymers 2022, 14, 3765. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Hu, S.; Wang, J.; Wang, T. High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Compos. Part B Eng. 2022, 244, 110171. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, P.; Guo, J.; Wang, K. Bonding behavior of concrete matrix and alkali-activated mortar incorporating nano-SiO2 and polyvinyl alcohol fiber: Theoretical analysis and prediction model. Ceram. Int. 2021, 47, 31638–31649. [Google Scholar] [CrossRef]
- Giorgetti, M.; Berrettoni, M.; Aquilanti, G.; Boldrini, G.; Lancellotti, I.; Leonelli, C. The Coordination Core and Charge of Chromium in Metakaolin-Geopolymers as Revealed by X-Ray Absorption Spectroscopy. Mater. Lett. 2020, 270, 127741. [Google Scholar] [CrossRef]
- Pereira, P.; Ferreira, B.; Oliveira, N.; Nassar, E.; Ciuffi, K.; Vicente, M.; Trujillano, R.; Rives, V.; Gil, A.; Korili, S.; et al. Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Appl. Sci. 2018, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.; Vance, E.; Kiyama, S.; Aly, Z.; Yee, P. Geopolymers as Candidates for the Immobilisation of Low- and Intermediate-Level Waste. MRS Proc. 2006, 985, 1001. [Google Scholar] [CrossRef]
- Arbel Haddad, M.; Ofer-Rozovsky, E.; Bar-Nes, G.; Borojovich, E.J.C.; Nikolski, A.; Mogiliansky, D.; Katz, A. Formation of Zeolites in Metakaolin-Based Geopolymers and Their Potential Application for Cs Immobilization. J. Nucl. Mater. 2017, 493, 168–179. [Google Scholar] [CrossRef]
- El-Eswed, B.I. Chemical Evaluation of Immobilization of Wastes Containing Pb, Cd, Cu and Zn in Alkali-Activated Materials: A Critical Review. J. Environ. Chem. Eng. 2020, 8, 104194. [Google Scholar] [CrossRef]
- Lancellotti, I.; Kamseu, E.; Michelazzi, M.; Barbieri, L.; Corradi, A.; Leonelli, C. Chemical Stability of Geopolymers Containing Municipal Solid Waste Incinerator Fly Ash. Waste Manag. 2010, 30, 673–679. [Google Scholar] [CrossRef]
- Nenadović, S.S.S.; Kljajević, L.M.; Ivanović, M.M.; Mirković, M.M.; Radmilović, N.; Rakočević, L.Z.; Nenadović, M.T. Structural and Chemical Properties of Geopolymer Gels Incorporated with Neodymium and Samarium. Gels 2021, 7, 195. [Google Scholar] [CrossRef]
- Fu, C.; Ye, H.; Zhu, K.; Fang, D.; Zhou, J. Alkali Cation Effects on Chloride Binding of Alkali-Activated Fly Ash and Metakaolin Geopolymers. Cem. Concr. Compos. 2020, 114, 103721. [Google Scholar] [CrossRef]
- Boldrini, G.; Sgarlata, C.; Lancellotti, I.; Barbieri, L.; Giorgetti, M.; Ciabocco, M.; Zamponi, S.; Berrettoni, M.; Leonelli, C. Efficient Chemical Stabilization of Tannery Wastewater Pollutants in a Single Step Process: Geopolymerization. Sustain. Environ. Res. 2021, 31, 33. [Google Scholar] [CrossRef]
- D’Angelo, A.; Dal Poggetto, G.; Piccolella, S.; Leonelli, C.; Catauro, M. Characterisation of White Metakaolin-Based Geopolymers Doped with Synthetic Organic Dyes. Polymers 2022, 14, 3380. [Google Scholar] [CrossRef] [PubMed]
- Al-Mashaqbeh, A.; El-Eswed, B.; Banat, R.; Khalili, F.I. Immobilization of Organic Dyes in Geopolymeric Cementing Material. Environ. Nanotechnol. Monit. Manag. 2018, 10, 351–359. [Google Scholar] [CrossRef]
- Hassaninejad-Darzi, S.K.; Mousavi, H.Z.; Ebrahimpour, M. Biosorption of Acridine Orange and Auramine O Dyes onto MCM-41 Mesoporous Silica Nanoparticles Using High-Accuracy UV–Vis Partial Least Squares Regression. J. Mol. Liq. 2017, 248, 990–1002. [Google Scholar] [CrossRef]
- Yektaeian, N.; Mehrabani, D.; Sepaskhah, M.; Zare, S.; Jamhiri, I.; Hatam, G. Lipophilic Tracer Dil and Fluorescence Labeling of Acridine Orange Used for Leishmania Major Tracing in the Fibroblast Cells. Heliyon 2019, 5, e03073. [Google Scholar] [CrossRef] [Green Version]
- Valentini, A.; Pucci, D.; Crispini, A.; Federici, G.; Bernardini, S. Acridine Orange Based Platinum(II) Complexes Inducing Cytotoxicity and Cell Cycle Perturbation in Spite of GSTP1 up-Regulation. Chem.-Biol. Interact. 2006, 161, 241–250. [Google Scholar] [CrossRef]
- Swami, D.; Pandit, P. Photocatalytic Degradation of Hazardous Dye Acridine Orange Using Semiconductor Titanium Dioxide (TiO2) under Visible Light. Nat. Environ. Pollut. Technol. 2013, 12, 517–522. [Google Scholar]
- Chaudhary, G.R.; Saharan, P.; Umar, A.; Mehta, S.K.; Mor, S. Well-Crystalline ZnO Nanostructures for the Removal of Acridine Orange and Coomassie Brilliant Blue R-250 Hazardous Dyes. Sci. Adv. Mater. 2013, 5, 1886–1894. [Google Scholar] [CrossRef]
- Rakkesh, R.A.; Durgalakshmi, D.; Balakumar, S. Graphene Based Nanoassembly for Simultaneous Detection and Degradation of Harmful Organic Contaminants from Aqueous Solution. RSC Adv. 2016, 6, 34342–34349. [Google Scholar] [CrossRef]
- Sà Ribeiro, R.A.; Sà Ribeiro, M.G.; Kutyla, G.P.; Kriven, W.M. Amazonian Metakaolin Reactivity for Geopolymer Synthesis. Adv. Mater. Sci. Eng. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sgarlata, C.; Formia, A.; Ferrari, F.; Leonelli, C. Effect of the Introduction of Reactive Fillers and Metakaolin in Waste Clay-Based Materials for Geopolymerization Processes. Molecules 2021, 26, 1325. [Google Scholar] [CrossRef] [PubMed]
- C09 Committee; Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2021.
- EUROPEAN STANDARDS EN 12390-5:2019; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. European Standards (EN): Pilsen, Czech Republic, 2019.
- EUROPEAN STANDARDS DIN EN 826; Thermal Insulating Products for Building Applications—Determination of Compression Behaviour. European Standards (EN): Pilsen, Czech Republic, 2013.
- Hudziky, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2009, 15, 55–63. [Google Scholar]
- Dal Poggetto, G.; D’Angelo, A.; Catauro, M.; Barbieri, L.; Leonelli, C. Recycling of Waste Corundum Abrasive Powder in MK-Based Geopolymers. Polymers 2022, 14, 2173. [Google Scholar] [CrossRef] [PubMed]
- Righi, C.; Barbieri, F.; Sgarbi, E.; Maistrello, L.; Bertacchini, A.; Andreola, F.N.; D’Angelo, A.; Catauro, M.; Barbieri, L. Suitability of Porous Inorganic Materials from Industrial Residues and Bioproducts for Use in Horticulture: A Multidisciplinary Approach. Appl.Sci. 2022, 12, 5437. [Google Scholar] [CrossRef]
- Fiallos, D.C.; Gómez, C.V.; Usca, G.T.; Pérez, D.C.; Tavolaro, P.; Martino, G.; Caputi, L.S.; Tavolaro, A. Removal of Acridine Orange from Water by Graphene Oxide. AIP Conf. Proc. 2015, 1646, 79. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wee, B.; Tay, Y.; Lei, J.; Yang, E.-H. Experimental investigation of Seebeck effect in metakaolin-based geopolymer. Construnction Build. Mater. 2021, 272, 121615. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Tchadjíe, L.N.; Tchakoute, H.K.; Kenne, B.B.D.; Elimbi, A.; Njopwouo, D. Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J. Asian. Ceram. Soc. 2014, 2, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Kani, E.N.; Allahverdi, A. Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram.-Silikáty 2009, 53, 195–204. [Google Scholar]
- Catauro, M.; Dal Poggetto, G.; Sgarlata, C.; Vecchio Ciprioti, S.; Pacifico, S.; Leonelli, C. Thermal and Microbiological Performance of Metakaolin-Based Geopolymers Cement with Waste Glass. Appl. Clay Sci. 2020, 197, 105763. [Google Scholar] [CrossRef]
- Sitarz, M.; Handke, M.; Mozgawa, W. Identification of Silicooxygen Rings in SiO2 Based on IR Spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2000, 56, 1819–1823. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 978-0-471-39362-7. [Google Scholar]
- John Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=5UbCcNEWSwF SpectraBase Spectrum ID=7vmVa0MnOn. Available online: https://spectrabase.com/spectrum/7vmVa0MnOn (accessed on 18 December 2022).
- Khelifia, S.; Mallah, B.; Ayadi, M.T.; Oueslati, M.H.; Sbihi, H.M.; Ayari, F. Performance of a local clay deposit in adsorptive and photochemical removal of Acridine Orange dye and DNA indicator from wastewater. Desalination Water Treat. 2020, 206, 396–406. [Google Scholar] [CrossRef]
- Kamseu, E.; Alzari, V.; Nuvoli, D.; Sanna, D.; Lancellotti, I.; Mariani, A.; Leonelli, C. Dependence of the geopolymerization process and end-products to the nature of solid precursors: Challenge of the sustainability. J. Clean. Prod. 2021, 278, 123587. [Google Scholar] [CrossRef]
- Nmiri, A.; Duc, M.; Hamdi, N.; Yazoghli-Marzouk, O.; Srasra, E. Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. Int. J. Miner. Metall. Mater 2019, 26, 555–564. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Wang, Y.; Feng, J. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer. Materials 2016, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, S. Review on characteristics of metakaolin-based geopolymer and fast setting. J. Korean Ceram. Soc. 2020, 57, 368–377. [Google Scholar] [CrossRef]
- Ricciotti, L.; Molino, A.J.; Roviello, V.; Chianese, E.; Cennamo, P.; Roviello, G. Geopolymer Composites for Potential Applications in Cultural Heritage. Environments 2017, 4, 91. [Google Scholar] [CrossRef] [Green Version]
- Clausi, M.; Tarantino, S.C.; Magnani, L.L.; Riccardi, M.P.; Tedeschi, C.; Zema, M. Metakaolin as a precursor of materials for applications in Cultural Heritage: Geopolymer-based mortars with ornamental stone aggregates. Appl. Clay Sci. 2016, 132–133, 589–599. [Google Scholar] [CrossRef]
- Górski, M.; Wielgus, N.; Loska, K.; Kozioł, M.; Landrat, M.; Scierski, W.; Pikoń, K. Characteristics of Metakaolin-Based Geopolymer with Cathode Ray Tube Glass. Polymers 2021, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
- Wattanarach, S.; Supothina, S.; Thavorniti, P. Preparation and properties of metakaolin-based porous geopolymer formed with sodium perborate. J. Asian Ceram. Soc. 2022, 10, 567–574. [Google Scholar] [CrossRef]
- Youmoue, M.; Tene Fongang, R.T.; Gharzouni, A.; Kaze, R.C.; Kamseu, E.; Sglavo, V.M.; Kenfack, I.T.; Nait-Ali, B.; Rossignol, S. Effect of silica and lignocellulosic additives on the formation and the distribution of meso and macropores in foam metakaolin-based geopolymer filters for dyes and wastewater filtration. SN Appl. Sci. 2020, 2, 642. [Google Scholar] [CrossRef] [Green Version]
- Yong-Sing, N.; Yun-Ming, L.; Cheng-Yong, H.; Abdullah, M.M.A.B.; Chan, L.W.L.; Hui-Teng, N.; Shee-Ween, O.; Wan-En, O.; Yong-Jie, H. Evaluation of Flexural Properties and Characterisation of 10-Mm Thin Geopolymer Based on Fly Ash and Ladle Furnace Slag. J. Mater. Res. Technol. 2021, 15, 163–176. [Google Scholar] [CrossRef]
- Winewrigth, M. Acridine—A negleted antibacterial chromophore. J. Antimicrob. Chemother. 2001, 47, 1–13. [Google Scholar] [CrossRef]
- Shenderovich, I. The Partner Does Matter: The Structure of Heteroaggregates of Acridine Orange in Water. Molecules 2019, 24, 2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Morais, F.A.P.; Campanholi, K.S.S.; Balbinot, R.B. Characterization of Acridine Orange in Homogeneous Media: A Supportive Study and Validation of Its Potential for Photo-Applications. Arch. Pharm. Pharmacol. Res. 2021, 3, APPR.MS.ID.00055. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, P.; Guo, J.; Wang, J. Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete. Gels 2022, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D.; Poulesquen, A.; Frizon, F. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer. J. Nucl. Mater. 2015, 464, 16–19. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Aranda, P.; Favier, A.; Habert, G.; van Damme, H.; Ruiz-Hitzky, E. The Maya Blue Nanostructured Material Concept Applied to Colouring Geopolymers. RSC Adv. 2015, 5, 98834–98841. [Google Scholar] [CrossRef] [Green Version]
- Pimraksa, K.; Setthaya, N.; Thala, M.; Chindaprasirt, P.; Murayama, M. Geopolymer/Zeolite composite materials with adsorptive and photocatalytic properties for dye removal. PLoS ONE 2020, 15, e0241603. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; O’Leary, B. Inorganic polymers (geopolymers) containing acid–base indicators as possible colour-change humidity indicators. Mater. Lett. 2009, 63, 230–232. [Google Scholar] [CrossRef]
- Stogia, M.-E.; Dimou, A.-E.; Kourkoulis, S.K.; Alexopoulos, N.D. Study of different binders for restoration applications. Procedia Struct. Integr. 2022, 41, 744–751. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Poon, C.-S. Photocatalytic NO removal of concrete surface layers intermixed with TiO2. Build. Environ. 2013, 70, 102–109. [Google Scholar] [CrossRef]
- Ambikakumari Sanalkumar, K.U.; Yang, E.-H. Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers. Cem. Concr. Compos. 2021, 115, 103847. [Google Scholar] [CrossRef]
Compound (wt%) | SiO2 | Al2O3 | TiO2 | Na2O | Other Oxides | H2O |
---|---|---|---|---|---|---|
White metakaolin | 53 1 | 40.5 1 | 5 1 | - | 1.5 1 | - |
Sodium silicate solution | 27.1 | - | - | 8.85 | - | 64.05 |
Sample Name | MK | Activator Solution | Liquid/Solid Ratio | AO |
---|---|---|---|---|
GP | 50 g | 79.4 g | 0.36 | - |
GPAO | 50 g | 79.4 g | 0.36 | 0.4 g (in 6 mL of ethanol) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Angelo, A.; Vertuccio, L.; Leonelli, C.; Alzeer, M.I.M.; Catauro, M. Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study. Polymers 2023, 15, 675. https://doi.org/10.3390/polym15030675
D’Angelo A, Vertuccio L, Leonelli C, Alzeer MIM, Catauro M. Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study. Polymers. 2023; 15(3):675. https://doi.org/10.3390/polym15030675
Chicago/Turabian StyleD’Angelo, Antonio, Luigi Vertuccio, Cristina Leonelli, Mohammad I. M. Alzeer, and Michelina Catauro. 2023. "Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study" Polymers 15, no. 3: 675. https://doi.org/10.3390/polym15030675
APA StyleD’Angelo, A., Vertuccio, L., Leonelli, C., Alzeer, M. I. M., & Catauro, M. (2023). Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study. Polymers, 15(3), 675. https://doi.org/10.3390/polym15030675