Changes in the Optical Properties of Rubber Exposed to High-Pressure Hydrogen Using Pulsed Terahertz Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. High-Temperature and High-Pressure Hydrogen Gas Exposure Conditions
2.3. Pulsed Terahertz Time-Domain Spectroscopy (Pulsed THz-TDS)
2.4. Raman Spectroscopy
2.5. FTIR Spectroscopy
3. Results
3.1. Terahertz Waveform in Time and Frequency Domain
3.2. Optical Parameters of the Terahertz Waveform in the Frequency Domain
3.3. FTIR and Raman Spectroscopy Results
4. Conclusions
- (1)
- Terahertz tests were conducted to obtain the terahertz A-scan results and optical parameters such as refractive index and absorption spectra of rubber samples (CR, EPDM, and NBR) exposed to hydrogen gas. The amplitude and optical time delay in the terahertz A-scan waveform commonly used for material property analysis can distinguish the hardness or density of the materials. All rubber samples showed a decreasing THz signal and increasing optical time delay.
- (2)
- In the terahertz frequency spectrum as well, significant changes were observed after hydrogen exposure. Phase changes were observed from around 0.8 THz onward, and signal attenuation occurred abruptly at specific frequencies.
- (3)
- The refractive index of CR increased by an average of 10.12%, whereas those of NBR and EPDM increased by 10.45% and 3.14%, respectively, after hydrogen exposure.
- (4)
- The absorption coefficient spectrum exhibited similar values before and after hydrogen exposure in the lower-frequency range. However, the increase in absorption coefficient values became more pronounced up to 1.0 THz in hydrogen-exposed specimens. Furthermore, beyond 1.0 THz, the absorption coefficient values exhibited a rapid increase, followed by a decrease.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yamabe, J.; Nishimura, S. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas. Int. J. Hydrogen Energy 2009, 34, 1977–1989. [Google Scholar] [CrossRef]
- Yamabe, J.; Nishimura, S. Hydrogen-induced degradation of rubber seals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2012; pp. 769–816. [Google Scholar]
- Law, V.; Dowling, D. Cloud Electrification as a Source of Ignition for Hydrogen Lift-Gas Airships Disasters. In Proceedings of the Chaotic Modeling and Simulation International Conference, Athenes, Greece, 8–11 June 2021; pp. 253–283. [Google Scholar]
- Gouran, D.S.; Hirokawa, R.Y.; Martz, A.E. A critical analysis of factors related to decisional processes involved in the Challenger disaster. Cent. States Speech J. 1986, 37, 118–135. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, I.G.; Kim, K. Evaluation of hydrogen permeation characteristics in rubbery polymers. Curr. Appl. Phys. 2021, 21, 43–49. [Google Scholar] [CrossRef]
- Yamabe, J.; Nishimura, S. Failure behavior of rubber O-ring under cyclic exposure to high-pressure hydrogen gas. Eng. Fail. Anal. 2013, 35, 193–205. [Google Scholar] [CrossRef]
- Yamabe, J.; Matsumoto, T.; Nishimura, S. Application of acoustic emission method to detection of internal fracture of sealing rubber material by high-pressure hydrogen decompression. Polym. Test. 2011, 30, 76–85. [Google Scholar] [CrossRef]
- Fujiwara, H.; Yamabe, J.; Nishimura, S. Evaluation of the change in chemical structure of acrylonitrile butadiene rubber after high-pressure hydrogen exposure. Int. J. Hydrogen Energy 2012, 37, 8729–8733. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ono, H.; Nishimura, S. Degradation behavior of acrylonitrile butadiene rubber after cyclic high-pressure hydrogen exposure. Int. J. Hydrogen Energy 2015, 40, 2025–2034. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, I.G.; Chung, K.S.; Kim, Y.-I.; Kim, D.H. Determination of permeation properties of hydrogen gas in sealing rubbers using thermal desorption analysis gas chromatography. Sci. Rep. 2021, 11, 17092. [Google Scholar] [CrossRef] [PubMed]
- Okuda, R.; Komatsu, K.; Nakamura, A.; Ito, O.; Nambu, K.; Saitoh, H. Evaluation of released amount of hydrogen after high pressure hydrogen loading in carbonate. Results Eng. 2019, 4, 100047. [Google Scholar] [CrossRef]
- Fujiwara, H. Analysis of acrylonitrile butadiene rubber (NBR) expanded with penetrated hydrogen due to high pressure hydrogen exposure. Int. Polym. Sci. Technol. 2017, 44, 41–48. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, I.G.; Kim, K.T.; Ryu, K.S.; Chung, K.S. Evaluation techniques of hydrogen permeation in sealing rubber materials. Polym. Test. 2021, 93, 107016. [Google Scholar] [CrossRef]
- Jeon, S.K.; Jung, J.K.; Chung, N.K.; Baek, U.B.; Nahm, S.H. Investigation of Physical and Mechanical Characteristics of Rubber Materials Exposed to High-Pressure Hydrogen. Polymers 2022, 14, 2233. [Google Scholar] [CrossRef] [PubMed]
- Balasooriya, W.; Clute, C.; Schrittesser, B.; Pinter, G. A review on applicability, limitations, and improvements of polymeric materials in high-pressure hydrogen gas atmospheres. Polym. Rev. 2022, 62, 175–209. [Google Scholar] [CrossRef]
- CSA/ANSI CHMC 2:19; Test Methods for Evaluating Material Compatibility in Compressed Hydrogen Applications Polymers. CSA Group: Toronto, ON, Canada, 2019. Available online: https://www.csagroup.org/store/product/2427320/ (accessed on 20 October 2023).
- Han, D.-H. Inner defect detection of glass fiber reinforced polymer sandwich panel using pulsed terahertz imaging based on smoothing and derivative. NDT E Int. 2023, 138, 102862. [Google Scholar] [CrossRef]
- Kang, L.-H.; Han, D.-H. Robotic-based terahertz imaging for nondestructive testing of a PVC pipe cap. NDT E Int. 2021, 123, 102500. [Google Scholar] [CrossRef]
- Freindorf, M.; Kraka, E.; Cremer, D. A comprehensive analysis of hydrogen bond interactions based on local vibrational modes. Int. J. Quantum Chem. 2012, 112, 3174–3187. [Google Scholar] [CrossRef]
- Komatsu, M.; Izutsu, T.; Ohki, Y.; Mizuno, M.; Fukunaga, K.; Nakamura, Y.; Chiwata, N. Terahertz spectroscopic analysis of ethylene-propylene-diene copolymer. In Proceedings of the 2014 International Symposium on Electrical Insulating Materials, Niigata City, Japan, 1–5 June 2014; pp. 338–341. [Google Scholar]
- Chang, T.; Zhang, X.; Cui, H.-L. Thermal aging analysis of carbon black and silica filled natural rubber based on terahertz dielectric spectroscopy. Infrared Phys. Technol. 2020, 105, 103195. [Google Scholar] [CrossRef]
- Lee, I.-S.; Lee, J.W. Effects of thermal aging on cellulose pressboard using terahertz time-domain spectroscopy. Curr. Appl. Phys. 2019, 19, 1145–1149. [Google Scholar] [CrossRef]
- Castagnet, S.; Ono, H.; Benoit, G.; Fujiwara, H.; Nishimura, S. Swelling measurement during sorption and decompression in a NBR exposed to high-pressure hydrogen. Int. J. Hydrogen Energy 2017, 42, 19359–19366. [Google Scholar] [CrossRef]
- Smith, Z.P.; Tiwari, R.R.; Murphy, T.M.; Sanders, D.F.; Gleason, K.L.; Paul, D.R.; Freeman, B.D. Hydrogen sorption in polymers for membrane applications. Polymer 2013, 54, 3026–3037. [Google Scholar] [CrossRef]
- Mahankar, P.S.; Dhoble, A.S. Review of hydraulic seal failures due to effect of medium to high temperature. Eng. Fail. Anal. 2021, 127, 105552. [Google Scholar] [CrossRef]
- Yang, H.-J.; Han, D.-H. Study on tensile loading state sensing and estimation of opaque polymer materials using pulsed-terahertz waves. Sens. Actuators A Phys. 2023, 364, 114791. [Google Scholar] [CrossRef]
- Han, D.-H.; Kang, L.-H. Nondestructive evaluation of GFRP composite including multi-delamination using THz spectroscopy and imaging. Compos. Struct. 2018, 185, 161–175. [Google Scholar] [CrossRef]
- Peters, O.; Schwerdtfeger, M.; Wietzke, S.; Sostmann, S.; Scheunemann, R.; Wilk, R.; Holzwarth, R.; Koch, M.; Fischer, B.M. Terahertz spectroscopy for rubber production testing. Polym. Test. 2013, 32, 932–936. [Google Scholar] [CrossRef]
Ref. | No. 1a | No. 1b | No. 2a | No. 2b | No. 3a | No. 3b | Avg. | ∆t | ∆t (%) | |
---|---|---|---|---|---|---|---|---|---|---|
CR | 18.00 | 18.57 | 18.73 | 18.67 | 18.43 | 18.47 | 18.60 | 18.58 | 0.58 | 3.21% |
EPDM | 17.32 | 17.80 | 17.90 | 17.83 | 17.97 | 18.03 | 18.03 | 17.93 | 0.61 | 3.51% |
NBR | 17.33 | 17.40 | 17.40 | 17.43 | 17.47 | 17.47 | 17.43 | 17.43 | 0.10 | 0.58% |
Ref. | No. 1a | No. 1b | No. 2a | No. 2b | No. 3a | No. 3b | Avg. | ∆Amp. | ∆Amp. (%) | |
---|---|---|---|---|---|---|---|---|---|---|
CR | 0.42 | 0.36 | 0.33 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | −0.08 | −18.13% |
EPDM | 0.55 | 0.48 | 0.51 | 0.48 | 0.48 | 0.46 | 0.45 | 0.47 | −0.08 | −14.50% |
NBR | 0.42 | 0.35 | 0.40 | 0.39 | 0.38 | 0.36 | 0.36 | 0.37 | −0.05 | −10.82% |
Ref. | No. 1a | No. 1b | No. 2a | No. 2b | No. 3a | No. 3b | Avg. | Max | Min | |
---|---|---|---|---|---|---|---|---|---|---|
EPDM | 2.95 | 3.19 | 3.22 | 3.22 | 3.28 | 3.32 | 3.32 | 3.26 | 3.32 | 3.19 |
CR | 3.30 | 3.65 | 3.73 | 3.70 | 3.57 | 3.55 | 3.67 | 3.65 | 3.73 | 3.55 |
NBR | 2.87 | 2.95 | 2.94 | 2.95 | 2.99 | 2.95 | 2.98 | 2.96 | 2.99 | 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, M.-Y.; Lee, H.C.; Yang, H.-J.; Han, D.-H. Changes in the Optical Properties of Rubber Exposed to High-Pressure Hydrogen Using Pulsed Terahertz Waves. Polymers 2023, 15, 4530. https://doi.org/10.3390/polym15234530
Hwang M-Y, Lee HC, Yang H-J, Han D-H. Changes in the Optical Properties of Rubber Exposed to High-Pressure Hydrogen Using Pulsed Terahertz Waves. Polymers. 2023; 15(23):4530. https://doi.org/10.3390/polym15234530
Chicago/Turabian StyleHwang, Mun-Young, Hyun Chul Lee, Hyeok-Jae Yang, and Dae-Hyun Han. 2023. "Changes in the Optical Properties of Rubber Exposed to High-Pressure Hydrogen Using Pulsed Terahertz Waves" Polymers 15, no. 23: 4530. https://doi.org/10.3390/polym15234530
APA StyleHwang, M. -Y., Lee, H. C., Yang, H. -J., & Han, D. -H. (2023). Changes in the Optical Properties of Rubber Exposed to High-Pressure Hydrogen Using Pulsed Terahertz Waves. Polymers, 15(23), 4530. https://doi.org/10.3390/polym15234530