Improvements in Mechanical and Shape-Memory Properties of Bio-Based Composite: Effects of Adding Carbon Fiber and Graphene Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Benzoxazine Monomer
2.3. Preparation of Shape-Memory Carbon-Fiber-Reinforced Composite and Neat V-fa/ECO Copolymer
2.4. Characterizations of the Shape-Memory Carbon-Fiber-Reinforced Composite
3. Results and Discussion
3.1. Flexural Properties of CFRP
3.2. Dynamic Mechanical Properties of CFRP
3.3. SEM Observations
3.4. Shape-Memory Properties of CFRP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54, 2199–2221. [Google Scholar] [CrossRef]
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv. Mater. 2021, 33, 2000713. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lou, J.; Yuan, J.; Deng, J. A review of shape memory polymers based on the intrinsic structures of their responsive switches. RSC Adv. 2021, 11, 28838–28850. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.A.R.; Prasad, H.C.; Abishera, R.; Bhargaw, H.N.; Naik, A. Improved recovery stress in multi-walled-carbon-nanotubes reinforced polyurethane. Mater. Des. 2015, 67, 492–500. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Zhao, L.; Li, W.; Zhang, H.; Yu, X.; Zhang, Z. High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 311–320. [Google Scholar] [CrossRef]
- Li, F.; Scarpa, F.; Lan, X.; Liu, L.; Liu, Y.; Leng, J. Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites. Compos. Part A Appl. Sci. Manuf. 2019, 116, 169–179. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, S.; Yang, Y.; Huang, W.M.; Leng, J.; Du, S. Surface grafting of carbon fibers with artificial silver-nanoparticle-decorated graphene oxide for high-speed electrical actuation of shape-memory polymers. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Nishikawa, M.; Wakatsuki, K.; Yoshimura, A.; Takeda, N. Effect of fiber arrangement on shape fixity and shape recovery in thermally activated shape memory polymer-based composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 165–173. [Google Scholar] [CrossRef]
- Fejős, M.; Romhány, G.; Karger-Kocsis, J. Shape memory characteristics of woven glass fibre fabric reinforced epoxy composite in flexure. J. Reinf. Plast. Compos. 2012, 31, 1532–1537. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Wang, G.; Xu, W.; Zhao, T.; Li, F.; Guo, H. Effect of layering angles on shape memory properties of graphene oxide/carbon fiber hybrid reinforced composites prepared by vacuum infiltration hot pressing system. High Perform. Polym. 2022, 34, 1164–1176. [Google Scholar] [CrossRef]
- Pumchusak, J.; Thajina, N.; Keawsujai, W.; Chaiwan, P. Effect of Organo-Modified Montmorillonite Nanoclay on Mechanical, Thermo-Mechanical, and Thermal Properties of Carbon Fiber-Reinforced Phenolic Composites. Polymers 2021, 13, 754. [Google Scholar] [CrossRef]
- Kandare, E.; Khatibi, A.A.; Yoo, S.; Wang, R.; Ma, J.; Olivier, P.; Gleizes, N.; Wang, C.H. Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos. Part A Appl. Sci. Manuf. 2015, 69, 72–82. [Google Scholar] [CrossRef]
- Sánchez, M.; Campo, M.; Jiménez-Suárez, A.; Ureña, A. Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Compos. Part B Eng. 2013, 45, 1613–1619. [Google Scholar] [CrossRef]
- Gangineni, P.K.; Yandrapu, S.; Ghosh, S.K.; Anand, A.; Prusty, R.K.; Ray, B.C. Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups. Compos. Part A Appl. Sci. Manuf. 2019, 122, 36–44. [Google Scholar] [CrossRef]
- Ning, H.; Li, J.; Hu, N.; Yan, C.; Liu, Y.; Wu, L.; Liu, F.; Zhang, J. Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon 2015, 91, 224–233. [Google Scholar] [CrossRef]
- Li, F.; Ma, Y.; Xu, Y.; Xu, W.; Zhu, W.; Guo, H. Effect of graphite oxide content on shape memory performance of graphite oxide-carbon fiber hybrid reinforced shape memory polymer composites by VIHPS. Polym. Adv. Technol. 2022, 33, 4265–4277. [Google Scholar] [CrossRef]
- Schäfer, H.; Hartwig, A.; Koschek, K. The nature of bonding matters: Benzoxazine based shape memory polymers. Polymer 2018, 135, 285–294. [Google Scholar] [CrossRef]
- Amornkitbamrung, L.; Srisaard, S.; Jubsilp, C.; Bielawski, C.W.; Um, S.H.; Rimdusit, S. Near-infrared light responsive shape memory polymers from bio-based benzoxazine/epoxy copolymers produced without using photothermal filler. Polymer 2020, 209, 122986. [Google Scholar] [CrossRef]
- Gu, S.; Jana, S. Effects of Polybenzoxazine on Shape Memory Properties of Polyurethanes with Amorphous and Crystalline Soft Segments. Polymers 2014, 6, 1008–1025. [Google Scholar] [CrossRef]
- Hombunma, P.; Parnklang, T.; Mora, P.; Jubsilp, C.; Rimdusit, S. Shape memory polymers from bio-based benzoxazine/epoxidized natural oil copolymers. Smart Mater. Struct. 2020, 29, 015036. [Google Scholar] [CrossRef]
- Prathumrat, P.; Tiptipakorn, S.; Rimdusit, S. Multiple-shape memory polymers from benzoxazine–urethane copolymers. Smart Mater. Struct. 2017, 26, 065025. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Su, X.; Han, M.; Li, H.; Run, M.; Song, H.; Wu, Y. Shape memory polybenzoxazines based on polyetheramine. React. Funct. Polym. 2016, 102, 62–69. [Google Scholar] [CrossRef]
- Sha, X.-L.; Yuan, L.; Liang, G.; Gu, A. Development and Mechanism of High-Performance Fully Biobased Shape Memory Benzoxazine Resins with a Green Strategy. ACS Sustain. Chem. Eng. 2020, 8, 18696–18705. [Google Scholar] [CrossRef]
- Sha, X.-L.; Yuan, L.; Liang, G.; Gu, A. Preparation of high performance bio-based benzoxazine resin through a green solvent-free strategy for shape memory application. Polymer 2020, 202, 122673. [Google Scholar] [CrossRef]
- Zhang, S.; Ran, Q.; Fu, Q.; Gu, Y. Preparation of Transparent and Flexible Shape Memory Polybenzoxazine Film through Chemical Structure Manipulation and Hydrogen Bonding Control. Macromolecules 2018, 51, 6561–6570. [Google Scholar] [CrossRef]
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Kamar, N.T.; Hossain, M.M.; Khomenko, A.; Haq, M.; Drzal, L.T.; Loos, A. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2015, 70, 82–92. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Li, F.; Xu, Y.; Xu, W.; Zhao, Y.; Guo, H.; Li, Y.; Yang, Z.; Xu, Y. Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS. Nanomaterials 2022, 12, 1184. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Jin, Y.; Lai, S.; Shi, L.; Shen, Y.; Yang, H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105686. [Google Scholar] [CrossRef]
- Wang, F.; Drzal, L.T.; Qin, Y.; Huang, Z. Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J. Mater. Sci. 2016, 51, 3337–3348. [Google Scholar] [CrossRef]
- Körbelin, J.; Kötter, B.; Voormann, H.; Brandenburg, L.; Selz, S.; Fiedler, B. Damage tolerance of few-layer graphene modified CFRP: From thin-to thick-ply laminates. Compos. Sci. Technol. 2021, 209, 108765. [Google Scholar] [CrossRef]
- Chen, H.; Xia, H.; Qiu, Y.; Ni, Q.-Q. Analyzing effects of interfaces on recovery rates of shape memory composites from the perspective of molecular motions. Compos. Sci. Technol. 2018, 163, 105–115. [Google Scholar] [CrossRef]
- Fejős, M.; Karger-Kocsis, J.; Grishchuk, S. Effects of fibre content and textile structure on dynamic-mechanical and shape-memory properties of ELO/flax biocomposites. J. Reinf. Plast. Compos. 2013, 32, 1879–1886. [Google Scholar] [CrossRef]
- Guo, W.; Shen, Z.; Guo, B.; Zhang, L.; Jia, D. Synthesis of bio-based copolyester and its reinforcement with zinc diacrylate for shape memory application. Polymer 2014, 55, 4324–4331. [Google Scholar] [CrossRef]
Sample | GnPs Content (wt.%) | Flexural Strength (MPa) | Flexural Modulus (GPa) |
---|---|---|---|
V-fa/ECO | 0 | 27.69 ± 4.71 | 0.55 ± 0.13 |
40%CF | 0 | 117.5 ± 5.50 | 10.3 ± 0.78 |
1 | 123.02 ± 10.04 | 11.97 ± 1.38 | |
3 | 137.21 ± 18.70 | 12.75 ± 1.87 | |
5 | 130.15 ± 12.97 | 13.56 ± 1.86 | |
50%CF | 3 | 176.61 ± 2.89 | 21.65 ± 1.77 |
60%CF | 3 | 181.92 ± 10.12 | 25.2 ± 3.48 |
70%CF | 3 | 141.42 ± 11.92 | 24.8 ± 4.63 |
Sample | GnPs Content (wt.%) | E′ (GPa) (−100 °C) | E′ (GPa) (Tg + 40 °C) | Tg (°C) |
---|---|---|---|---|
40%CF | 0 | 20.1 | 1.71 | 100 |
1 | 20.9 | 1.98 | 102 | |
3 | 21.4 | 1.99 | 104 | |
5 | 20.3 | 1.55 | 103 | |
50%CF | 3 | 26.0 | 4.49 | 108 |
60%CF | 3 | 36.4 | 6.46 | 112 |
70%CF | 3 | 36.0 | 8.68 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luengrojanakul, P.; Mora, P.; Bunyanuwat, K.; Jubsilp, C.; Rimdusit, S. Improvements in Mechanical and Shape-Memory Properties of Bio-Based Composite: Effects of Adding Carbon Fiber and Graphene Nanoparticles. Polymers 2023, 15, 4513. https://doi.org/10.3390/polym15234513
Luengrojanakul P, Mora P, Bunyanuwat K, Jubsilp C, Rimdusit S. Improvements in Mechanical and Shape-Memory Properties of Bio-Based Composite: Effects of Adding Carbon Fiber and Graphene Nanoparticles. Polymers. 2023; 15(23):4513. https://doi.org/10.3390/polym15234513
Chicago/Turabian StyleLuengrojanakul, Panuwat, Phattharin Mora, Kittipon Bunyanuwat, Chanchira Jubsilp, and Sarawut Rimdusit. 2023. "Improvements in Mechanical and Shape-Memory Properties of Bio-Based Composite: Effects of Adding Carbon Fiber and Graphene Nanoparticles" Polymers 15, no. 23: 4513. https://doi.org/10.3390/polym15234513
APA StyleLuengrojanakul, P., Mora, P., Bunyanuwat, K., Jubsilp, C., & Rimdusit, S. (2023). Improvements in Mechanical and Shape-Memory Properties of Bio-Based Composite: Effects of Adding Carbon Fiber and Graphene Nanoparticles. Polymers, 15(23), 4513. https://doi.org/10.3390/polym15234513