Developing Mixed Matrix Membranes with Good CO2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEG-Functionalized UiO-66 MOF
2.3. Synthesis of 6FDA-Durene Polyimide
2.4. Preparation of PEG-MOF-Incorporated 6FDA-Durene-Based Mixed Matrix Membranes
2.5. Characterization and Measurements
3. Results and Discussion
3.1. Synthesis and Characterization of UiO-66-NH2 and UiO-66-NH2 (PEG-MOF) Containing PEG
3.2. Fabrication and Characterization of MMMs
3.2.1. Fabrication of MMMs
3.2.2. Morphological Analysis Using WAXD and SEM
3.3. Thermal Properties of the MMMs
3.4. Gas Separation Performance of MMMs
3.5. Permeability Versus Selectivity of the MMMs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, W.Y. A Techno-Economic Review on Carbon Capture, Utilisation and Storage Systems for Achieving a Net-Zero CO2 Emissions Future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Nocito, F.; Dibenedetto, A. Atmospheric CO2 Mitigation Technologies: Carbon Capture Utilization and Storage. Curr. Opin. Green Sustain. Chem. 2020, 21, 34–43. [Google Scholar] [CrossRef]
- Sidhikku Kandath Valappil, R.; Ghasem, N.; Al-Marzouqi, M. Current and Future Trends in Polymer Membrane-Based Gas Separation Technology: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 98, 103–129. [Google Scholar] [CrossRef]
- Luis, P.; Van Gerven, T.; Van der Bruggen, B. Recent Developments in Membrane-Based Technologies for CO2 Capture. Prog. Energy Combust. Sci. 2012, 38, 419–448. [Google Scholar] [CrossRef]
- Robeson, L.M. Polymer Membranes for Gas Separation. Curr. Opin. Solid State Mater. Sci. 1999, 4, 549–552. [Google Scholar] [CrossRef]
- Robeson, L.M. The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Xiao, Y.; Low, B.T.; Hosseini, S.S.; Chung, T.S.; Paul, D.R. The Strategies of Molecular Architecture and Modification of Polyimide-Based Membranes for CO2 Removal from Natural Gas—A Review. Prog. Polym. Sci. 2009, 34, 561–580. [Google Scholar] [CrossRef]
- Boer, D.G.; Langerak, J.; Pescarmona, P.P. Zeolites as Selective Adsorbents for CO2 Separation. ACS Appl. Energy Mater. 2023, 6, 2634–2656. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, W.; Yang, X.; Yan, K.; Shen, M.; Pan, H.; Zhu, H.; Wang, L. Tailoring Zeolite Eri Aperture for Efficient Separation of CO2 from Gas Mixtures. Sep. Purif. Technol. 2023, 309, 123078. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, Z.-Z.; Xiang, S.; Chen, B. Perspective of Microporous Metal–Organic Frameworks for CO2 Capture and Separation. Energy Environ. Sci. 2014, 7, 2868. [Google Scholar] [CrossRef]
- Hossain, I.; Husna, A.; Chaemchuen, S.; Verpoort, F.; Kim, T.-H. Cross-Linked Mixed-Matrix Membranes Using Functionalized UiO-66-NH2 into PEG/PPG–PDMS-Based Rubbery Polymer for Efficient CO2 Separation. Appl. Mater. Interfaces 2020, 12, 57916–57931. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, J.; Gao, Y.; Ji, T.; Chen, S.; Wang, C.; Lu, P.; Li, Y.; Liu, Y. Fabrication of Highly Oriented Ultrathin Zirconium Metal-organic Framework Membrane from Nanosheets towards Unprecedented Gas Separation. Angew. Chem. 2023, 135, e202216697. [Google Scholar] [CrossRef]
- Ma, D.; Li, Z.; Zhu, J.; Zhou, Y.; Chen, L.; Mai, X.; Liufu, M.; Wu, Y.; Li, Y. Inverse and Highly Selective Separation of CO2/C2H2 on a Thulium–Organic Framework. J. Mater. Chem. A 2020, 8, 11933–11937. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, H.; Chen, Y.; Zhu, S.; Jiang, H.; Song, S.; Ren, Y.; Wang, Y.; Liang, X.; He, G.; et al. Missing-linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation. Angew. Chem. 2022, 134, e202210466. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, L.; Lv, Y.; Tan, T. Facile Manufacture of COF-Based Mixed Matrix Membranes for Efficient CO2 Separation. J. Chem. Eng. 2022, 430, 133001. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Wu, S.; Song, S.; Guo, Z.; Ren, Y.; Zhao, R.; Yang, L.; Wu, Y.; Jiang, Z. Multifunctional Covalent Organic Framework (Cof)-Based Mixed Matrix Membranes for Enhanced CO2 Separation. J. Membr. Sci. 2021, 618, 118693. [Google Scholar] [CrossRef]
- Yang, Y.; Chuah, C.Y.; Bae, T.-H. Polyamine-Appended Porous Organic Polymers for Efficient Post-Combustion CO2 Capture. J. Chem. Eng. 2019, 358, 1227–1234. [Google Scholar] [CrossRef]
- Bhanja, P.; Modak, A.; Bhaumik, A. Porous Organic Polymers for CO2 Storage and Conversion Reactions. ChemCatChem 2018, 11, 244–257. [Google Scholar] [CrossRef]
- Loloei, M.; Kaliaguine, S.; Rodrigue, D. Mixed Matrix Membranes Based on NH2-MIL-53 (Al) and 6FDA-ODA Polyimide for CO2 Separation: Effect of the Processing Route on Improving MOF-Polymer Interfacial Interaction. Sep. Purif. Technol. 2021, 270, 118786. [Google Scholar] [CrossRef]
- Li, C.; Qi, A.; Ling, Y.; Tao, Y.; Zhang, Y.-B.; Li, T. Establishing Gas Transport Highways in MOF-Based Mixed Matrix Membranes. Sci. Adv. 2023, 9, eadf5087. [Google Scholar] [CrossRef] [PubMed]
- Tanvidkar, P.; Appari, S.; Kuncharam, B.V. A Review of Techniques to Improve Performance of Metal Organic Framework (MOF) Based Mixed Matrix Membranes for CO2/CH4 Separation. Rev. Environ. Sci. Biotechnol. 2022, 21, 539–569. [Google Scholar] [CrossRef]
- Husna, A.; Hossain, I.; Jeong, I.; Kim, T.-H. Mixed Matrix Membranes for Efficient CO2 Separation Using an Engineered UiO-66 MOF in a Pebax Polymer. Polymers 2022, 14, 655. [Google Scholar] [CrossRef]
- Husna, A.; Hossain, I.; Choi, O.; Lee, S.M.; Kim, T. Efficient CO2 Separation Using a PIM-PI-functionalized UiO-66 MOF Incorporated Mixed Matrix Membrane in a PIM-PI-1 Polymer. Macromol. Mater. Eng. 2021, 306, 2100298. [Google Scholar] [CrossRef]
- Shah Buddin, M.M.H.; Ahmad, A.L. A Review on Metal-Organic Frameworks as Filler in Mixed Matrix Membrane: Recent Strategies to Surpass Upper Bound for CO2 Separation. J. CO2 Util. 2021, 51, 101616. [Google Scholar] [CrossRef]
- Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-synthetic Modification of Metal–Organic Frameworks toward Applications. Adv. Funct. Mater. 2020, 31, 2006291. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, D. Post-Synthetic Modification of Metal-Organic Framework-Based Membranes for Enhanced Molecular Separations. Coord. Chem. Rev. 2023, 491, 215259. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, X.; Kang, Z.; Liu, X.; Sun, D. Isoreticular Chemistry within Metal–Organic Frameworks for Gas Storage and Separation. Coord. Chem. Rev. 2021, 443, 213968. [Google Scholar] [CrossRef]
- Vatanpour, V.; Teber, O.O.; Mehrabi, M.; Koyuncu, I. Polyvinyl Alcohol-Based Separation Membranes: A Comprehensive Review on Fabrication Techniques, Applications and Future Prospective. Mater. Today Chem. 2023, 28, 101381. [Google Scholar] [CrossRef]
- Asadi, E.; Ghadimi, A.; Hosseini, S.S.; Sadatnia, B.; Rostamizadeh, M.; Nadeali, A. Surfactant-Mediated and Wet-Impregnation Approaches for Modification of ZIF-8 Nanocrystals: Mixed Matrix Membranes for CO2/CH4 Separation. Microporous Mesoporous Mater. 2022, 329, 111539. [Google Scholar] [CrossRef]
- Yu, X.; Li, B.; Wu, L.; Shi, D.; Han, S. Review and Perspectives of Monolithic Metal–Organic Frameworks: Toward Industrial Applications. Energy Fuels 2023, 37, 9938–9955. [Google Scholar] [CrossRef]
- Liu, M.; Xie, K.; Nothling, M.D.; Gurr, P.A.; Tan, S.S.; Fu, Q.; Webley, P.A.; Qiao, G.G. Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano 2018, 12, 11591–11599. [Google Scholar] [CrossRef]
- Bandehali, S.; Moghadassi, A.; Parvizian, F.; Hosseini, S.M.; Matsuura, T.; Joudaki, E. Advances in High Carbon Dioxide Separation Performance of Poly (Ethylene Oxide)-Based Membranes. J. Energy Chem. 2020, 46, 30–52. [Google Scholar] [CrossRef]
- Hossain, I.; Park, S.; Husna, A.; Kim, Y.; Kim, H.; Kim, T.-H. PIM-PI-1 and Poly(Ethylene Glycol)/Poly(Propylene Glycol)-Based Mechanically Robust Copolyimide Membranes with High CO2-Selectivity and an Anti-Aging Property: A Joint Experimental–Computational Exploration. ACS Appl. Mater. Interfaces 2021, 13, 49890–49906. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, Z.; Wang, M.; Qiao, Z.; Wang, J. High Nanoparticles Loadings Mixed Matrix Membranes via Chemical Bridging-Crosslinking for CO2 Separation. J. Membr. Sci. 2019, 573, 455–464. [Google Scholar] [CrossRef]
- Wang, H.; He, S.; Qin, X.; Li, C.; Li, T. Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes. J. Am. Chem. Soc. 2018, 140, 17203–17210. [Google Scholar] [CrossRef]
- Kim, D.; Hossain, I.; Kim, Y.; Choi, O.; Kim, T.-H. PEG/PPG-PDMS-Adamantane-Based Crosslinked Terpolymer Using the ROMP Technique to Prepare a Highly Permeable and CO2-Selective Polymer Membrane. Polymers 2020, 12, 1674. [Google Scholar] [CrossRef]
- Teng, X.; Xu, H.; Song, W.; Shi, J.; Xin, J.; Hiscox, W.C.; Zhang, J. Preparation and Properties of Hydrogels Based on PEGylated Lignosulfonate Amine. ACS Omega 2017, 2, 251–259. [Google Scholar] [CrossRef]
- Dastneshan, A.; Rahiminezhad, S.; Naderi Mezajin, M.; Nouri Jevinani, H.; Akbarzadeh, I.; Abdihaji, M.; Qahremani, R.; Jahanbakhshi, M.; Asghari Lalami, Z.; Heydari, H.; et al. Cefazolin Encapsulated UiO-66-NH2 Nanoparticles Enhance the Antibacterial Activity and Biofilm Inhibition against Drug-Resistant S. Aureus: In Vitro and in Vivo Studies. J. Chem. Eng. 2023, 455, 140544. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Che, Y.; Xing, H.; Sun, F.; Zhou, W.; Zhu, G. Controlled Partial Linker Thermolysis in Metal-organic Framework UiO-66-NH2 to Give a Single-site Copper Photocatalyst for the Functionalization of Terminal Alkynes. Angew. Chem. 2023, 62, e202308651. [Google Scholar] [CrossRef] [PubMed]
- Khosroshahi, N.; Goudarzi, M.D.; Gilvan, M.E.; Safarifard, V. Collocation of MnFe2O4 and UiO-66-NH2: An Efficient and Reusable Nanocatalyst for Achieving High-Performance in Hexavalent Chromium Reduction. J. Mol. Struct. 2022, 1263, 132994. [Google Scholar] [CrossRef]
- Majumdar, S.; Tokay, B.; Martin-Gil, V.; Campbell, J.; Castro-Muñoz, R.; Ahmad, M.Z.; Fila, V. MG-MOF-74/Polyvinyl Acetate (PVAC) Mixed Matrix Membranes for CO2 Separation. Sep. Purif. Technol. 2020, 238, 116411. [Google Scholar] [CrossRef]
- Ding, R.; Zheng, W.; Yang, K.; Dai, Y.; Ruan, X.; Yan, X.; He, G. Amino-Functional ZiF-8 Nanocrystals by Microemulsion Based Mixed Linker Strategy and the Enhanced CO2/N2 Separation. Sep. Purif. Technol. 2020, 236, 116209. [Google Scholar] [CrossRef]
- Song, C.; Li, R.; Fan, Z.; Liu, Q.; Zhang, B.; Kitamura, Y. CO2/N2 Separation Performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 Mixed Matrix Membranes and Intensification via Sub-Ambient Operation. Sep. Purif. Technol. 2020, 238, 116500. [Google Scholar] [CrossRef]
- Wijenayake, S.N.; Panapitiya, N.P.; Versteeg, S.H.; Nguyen, C.N.; Goel, S.; Balkus, K.J.; Musselman, I.H.; Ferraris, J.P. Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation. Ind. Eng. Chem. Res. 2013, 52, 6991–7001. [Google Scholar] [CrossRef]
- Katayama, Y.; Bentz, K.C.; Cohen, S.M. Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS Appl. Mater. Interfaces 2019, 11, 13029–13037. [Google Scholar] [CrossRef]
- Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P. MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 8161–8266. [Google Scholar] [CrossRef]
- Oe, N.; Hosono, N.; Uemura, T. Revisiting Molecular Adsorption: Unconventional Uptake of Polymer Chains from Solution into Sub-Nanoporous Media. Chem. Sci. 2021, 12, 12576–12586. [Google Scholar] [CrossRef]
- Agostoni, V.; Horcajada, P.; Noiray, M.; Malanga, M.; Aykaç, A.; Jicsinszky, L.; Vargas-Berenguel, A.; Semiramoth, N.; Daoud-Mahammed, S.; Nicolas, V.; et al. A “Green” Strategy to Construct Non-Covalent, Stable and Bioactive Coatings on Porous MOF Nanoparticles. Sci. Rep. 2015, 5, 7925. [Google Scholar] [CrossRef]
- Rijnaarts, T.; Mejia-Ariza, R.; Egberink, R.J.; van Roosmalen, W.; Huskens, J. Metal-Organic Frameworks (MOFs) as Multivalent Materials: Size Control and Surface Functionalization by Monovalent Capping Ligands. Chem. Eur. J. 2015, 21, 10296–10301. [Google Scholar] [CrossRef]
- Le Ouay, B.; Watanabe, C.; Mochizuki, S.; Takayanagi, M.; Nagaoka, M.; Kitao, T.; Uemura, T. Selective Sorting of Polymers with Different Terminal Groups Using Metal-Organic Frameworks. Nat. Commun. 2018, 9, 3635. [Google Scholar] [CrossRef]
- Pastore, V.J.; Cook, T.R. Coordination-Driven Self-Assembly in Polymer–Inorganic Hybrid Materials. Chem. Mater. 2020, 32, 3680–3700. [Google Scholar] [CrossRef]
- Duan, P.; Moreton, J.C.; Tavares, S.R.; Semino, R.; Maurin, G.; Cohen, S.M.; Schmidt-Rohr, K. Polymer Infiltration into Metal–Organic Frameworks in Mixed-Matrix Membranes Detected in Situ by NMR. J. Am. Chem. Soc. 2019, 141, 7589–7595. [Google Scholar] [CrossRef] [PubMed]
- Semino, R.; Moreton, J.C.; Ramsahye, N.A.; Cohen, S.M.; Maurin, G. Understanding the Origins of Metal–Organic Framework/Polymer Compatibility. Chem. Sci. 2018, 9, 315–324. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, B.; Coleman, M.R.; Li, P. Gas Transport Properties in (6FDA-RTIL)-(6FDA-MDA) Block Copolyimides. J. Appl. Polym. Sci. 2015, 133, 43077. [Google Scholar] [CrossRef]
- Kazama, S.; Teramoto, T.; Haraya, K. Carbon Dioxide and Nitrogen Transport Properties of Bis(Phenyl)Fluorene-Based Cardo Polymer Membranes. J. Membr. Sci. 2002, 207, 91–104. [Google Scholar] [CrossRef]
- Kim, K.J.; Chae, Y.; An, S.J.; Jo, J.H.; Park, S.; Chi, W.S. Microphase-Separated Morphology Controlled Polyimide Graft Copolymer Membranes for CO2 Separation. Sep. Purif. Technol. 2023, 304, 122315. [Google Scholar] [CrossRef]
- Ma, C.; Urban, J.J. Hydrogen-bonded Polyimide/Metal-organic Framework Hybrid Membranes for Ultrafast Separations of Multiple Gas Pairs. Adv. Funct. Mater. 2019, 29, 1903243. [Google Scholar] [CrossRef]
- Liu, B.; Li, D.; Yao, J.; Sun, H. Improved CO2 Separation Performance and Interfacial Affinity of Mixed Matrix Membrane by Incorporating UiO-66-PEI@[bmim][Tf2N] Particles. Sep. Purif. Technol. 2020, 239, 116519. [Google Scholar] [CrossRef]
- Prasetya, N.; Himma, N.F.; Sutrisna, P.D.; Wenten, I.G.; Ladewig, B.P. A Review on Emerging Organic-Containing Microporous Material Membranes for Carbon Capture and Separation. J. Chem. Eng. 2020, 391, 123575. [Google Scholar] [CrossRef]
- Prasetya, N.; Donose, B.C.; Ladewig, B.P. A New and Highly Robust Light-Responsive Azo-UiO-66 for Highly Selective and Low Energy Post-Combustion CO2 Capture and Its Application in a Mixed Matrix Membrane for CO2/N2 Separation. J. Mater. Chem. A 2018, 6, 16390–16402. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; de Ribeiro, J.; de Costa, E.; Miranda, J.L.; Ferraz, H.C. Nanostructured Membranes Containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 Separation. Sep. Purif. Technol. 2018, 192, 491–500. [Google Scholar] [CrossRef]
- Wu, D.; Hou, R.; Yi, C.; Smith, S.J.D.; Fu, J.; Ng, D.; Doherty, C.M.; Mulder, R.J.; Xie, Z.; Hill, M.R. Enhancing Polyimide-Based Mixed Matrix Membranes Performance for CO2 Separation Containing PAF-1 and P-DCX. Sep. Purif. Technol. 2021, 268, 118677. [Google Scholar] [CrossRef]
Membrane | a Permeability (Barrer) | Selectivity, α | |||
---|---|---|---|---|---|
CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | |
6FDA-durene | 973.90 | 76.60 | 66.00 | 12.71 | 14.76 |
UiO-66-NH2 (10 wt%)-MMM | 2558.92 | 156.38 | 153.89 | 16.36 | 16.63 |
MMM-3 | 1572.13 | 81.20 | 69.50 | 19.36 | 22.62 |
MMM-5 | 1600.00 | 84.00 | 72.00 | 19.05 | 22.22 |
MMM-10 | 1671.00 | 88.60 | 74.60 | 18.86 | 22.40 |
MMM-15 | 1789.50 | 132.30 | 95.30 | 13.53 | 18.78 |
Membrane | Diffusivity, D a | Diffusivity Selectivity | Solubility, S b | Solubility Selectivity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | |
6FDA-durene | 18.55 | 15.40 | 3.00 | 1.20 | 6.18 | 0.53 | 0.05 | 0.22 | 10.60 | 2.41 |
UiO-66-NH2 (10 wt%)-MMM | 43.27 | 30.16 | 8.55 | 1.43 | 5.06 | 0.59 | 0.05 | 0.18 | 11.80 | 3.28 |
MMM-3 | 18.60 | 16.10 | 3.54 | 1.15 | 5.25 | 0.85 | 0.05 | 0.19 | 17.00 | 4.47 |
MMM-5 | 14.90 | 13.60 | 8.20 | 1.09 | 1.82 | 1.07 | 0.06 | 0.09 | 17.83 | 11.89 |
MMM-10 | 12.70 | 12.50 | 7.75 | 1.02 | 1.64 | 1.31 | 0.07 | 0.10 | 18.71 | 13.10 |
MMM-15 | 25.20 | 12.05 | 11.30 | 2.09 | 2.23 | 0.71 | 0.10 | 0.08 | 7.10 | 8.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adot Veetil, K.; Husna, A.; Kabir, M.H.; Jeong, I.; Choi, O.; Hossain, I.; Kim, T.-H. Developing Mixed Matrix Membranes with Good CO2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide. Polymers 2023, 15, 4442. https://doi.org/10.3390/polym15224442
Adot Veetil K, Husna A, Kabir MH, Jeong I, Choi O, Hossain I, Kim T-H. Developing Mixed Matrix Membranes with Good CO2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide. Polymers. 2023; 15(22):4442. https://doi.org/10.3390/polym15224442
Chicago/Turabian StyleAdot Veetil, Kavya, Asmaul Husna, Md. Homayun Kabir, Insu Jeong, Ook Choi, Iqubal Hossain, and Tae-Hyun Kim. 2023. "Developing Mixed Matrix Membranes with Good CO2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide" Polymers 15, no. 22: 4442. https://doi.org/10.3390/polym15224442
APA StyleAdot Veetil, K., Husna, A., Kabir, M. H., Jeong, I., Choi, O., Hossain, I., & Kim, T. -H. (2023). Developing Mixed Matrix Membranes with Good CO2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide. Polymers, 15(22), 4442. https://doi.org/10.3390/polym15224442