Liquid Crystal Polymer-Based Miniaturized Fully Implantable Deep Brain Stimulator
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Overview
2.2. Device Fabrication
2.2.1. Microfabrication of an Electrode on an LCP Substrate
2.2.2. Circuit Design
2.2.3. Integration
2.2.4. Packaging
2.3. Evaluation
2.3.1. FEM Simulation
2.3.2. In Vivo Experiment
3. Results
3.1. Fabrication of an Electrode Array and a System Substrate
3.2. Evaluation
3.2.1. SAR Safety Verification
3.2.2. In Vivo Animal Experiment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shirvalkar, P.; Seth, M.; Schiff, N.D.; Herrera, D.G. Cognitive Enhancement with Central Thalamic Electrical Stimulation. Proc. Natl. Acad. Sci. USA 2006, 103, 17007–17012. [Google Scholar] [CrossRef]
- Boccard, S.G.J.; Pereira, E.A.C.; Aziz, T.Z. Deep Brain Stimulation for Chronic Pain. J. Clin. Neurosci. 2015, 22, 1537–1543. [Google Scholar] [CrossRef]
- Stadler, J.A.; Ellens, D.J.; Rosenow, J.M. Deep Brain Stimulation and Motor Cortical Stimulation for Neuropathic Pain. Curr. Pain. Headache Rep. 2011, 15, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.C.; Aziz, T.Z. Neuropathic Pain and Deep Brain Stimulation. Neurotherapeutics 2014, 11, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Rasche, D.; Rinaldi, P.C.; Young, R.F.; Tronnier, V.M. Deep Brain Stimulation for the Treatment of Various Chronic Pain Syndromes. Neurosurg. Focus. 2006, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hariz, M. My 25 Stimulating Years with DBS in Parkinson’s Disease. J. Park. Dis. 2017, 7, S33–S41. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.K. Deep Brain Stimulation: Current and Future Clinical Applications. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2011; Volume 86, pp. 662–672. [Google Scholar]
- Kern, D.S.; Kumar, R. Deep Brain Stimulation. Neurologist 2007, 13, 237–252. [Google Scholar] [CrossRef]
- Neudorfer, C.; Elias, G.J.B.; Jakobs, M.; Boutet, A.; Germann, J.; Narang, K.; Loh, A.; Paff, M.; Horn, A.; Kucharczyk, W.; et al. Mapping Autonomic, Mood and Cognitive Effects of Hypothalamic Region Deep Brain Stimulation. Brain 2021, 144, 2837–2851. [Google Scholar] [CrossRef]
- Sankar, T.; Lipsman, N.; Lozano, A.M. Deep Brain Stimulation for Disorders of Memory and Cognition. Neurotherapeutics 2014, 11, 527–534. [Google Scholar] [CrossRef]
- Xu, J.; Huang, T.; Dana, A. Deep Brain Stimulation of the Subthalamic Nucleus to Improve Symptoms and Cognitive Functions in Patients with Refractory Obsessive–Compulsive Disorder: A Longitudinal Study. Neurol. Sci. 2023, 44, 2385–2392. [Google Scholar] [CrossRef]
- Amon, A.; Alesch, F. Systems for Deep Brain Stimulation: Review of Technical Features. J. Neural Transm. 2017, 124, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.N.; Osting, B.; Vorwerk, J.; Dorval, A.D.; Butson, C.R. Optimized Programming Algorithm for Cylindrical and Directional Deep Brain Stimulation Electrodes. J. Neural Eng. 2018, 15, 026005. [Google Scholar] [CrossRef] [PubMed]
- Kahan, J.; Papadaki, A.; White, M.; Mancini, L.; Yousry, T.; Zrinzo, L.; Limousin, P.; Hariz, M.; Foltynie, T.; Thornton, J. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices. PLoS ONE 2015, 10, e0129077. [Google Scholar] [CrossRef]
- Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W.; Davidson, B.; Grill, W.M.; Hariz, M.I.; Horn, A. Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. [Google Scholar] [CrossRef]
- Okun, M.S. Deep-Brain Stimulation—Entering the Era of Human Neural-Network Modulation. N. Engl. J. Med. 2014, 371, 1369–1373. [Google Scholar] [CrossRef]
- Lee, H.-M.; Park, H.; Ghovanloo, M. A Power-Efficient Wireless System with Adaptive Supply Control for Deep Brain Stimulation. IEEE J. Solid-State Circuits 2013, 48, 2203–2216. [Google Scholar] [CrossRef]
- Kocabicak, E.; Jahanshahi, A.; Schonfeld, L.; Hescham, S.-A.; Temel, Y.; Sonny, T.A.N. Deep Brain Stimulation of the Rat Subthalamic Nucleus Induced Inhibition of Median Raphe Serotonergic and Dopaminergic Neurotransmission. Turk. Neurosurg. 2015, 25, 721–727. [Google Scholar] [CrossRef]
- Doucette, W.T.; Khokhar, J.Y.; Green, A.I. Nucleus Accumbens Deep Brain Stimulation in a Rat Model of Binge Eating. Transl. Psychiatry 2015, 5, e695. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ghekiere, H.; Beeckmans, D.; Tambuyzer, T.; van Kuyck, K.; Aerts, J.-M.; Nuttin, B. Conceptualization and Validation of an Open-Source Closed-Loop Deep Brain Stimulation System in Rat. Sci. Rep. 2015, 5, 9921. [Google Scholar] [CrossRef]
- Torres-Sanchez, S.; Perez-Caballero, L.; Mico, J.A.; Celada, P.; Berrocoso, E. Effect of Deep Brain Stimulation of the Ventromedial Prefrontal Cortex on the Noradrenergic System in Rats. Brain Stimul. 2018, 11, 222–230. [Google Scholar] [CrossRef]
- Evans, M.C.; Clark, V.W.; Manning, P.J.; De Ridder, D.; Reynolds, J.N.J. Optimizing Deep Brain Stimulation of the Nucleus Accumbens in a Reward Preference Rat Model. Neuromodul. Technol. Neural Interface 2015, 18, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Lee, S.W.; Min, K.S.; Shin, S.; Jun, S.B.; Kim, S.J. Liquid Crystal Polymer(LCP), an Attractive Substrate for Retinal Implant. Sens. Mater. 2012, 24, 189–203. [Google Scholar]
- Jeong, J.; Bae, S.H.; Seo, J.-M.; Chung, H.; Kim, S.J. Long-Term Evaluation of a Liquid Crystal Polymer (LCP)-Based Retinal Prosthesis. J. Neural Eng. 2016, 13, 025004. [Google Scholar] [CrossRef]
- Woods, V.; Trumpis, M.; Bent, B.; Palopoli-Trojani, K.; Chiang, C.-H.; Wang, C.; Yu, C.; Insanally, M.N.; Froemke, R.C.; Viventi, J. Long-Term Recording Reliability of Liquid Crystal Polymer ΜECoG Arrays. J. Neural Eng. 2018, 15, 066024. [Google Scholar] [CrossRef]
- Au, S.L.C.; Chen, F.-Y.B.; Budgett, D.M.; Malpas, S.C.; Guild, S.-J.; McCormick, D. Injection Molded Liquid Crystal Polymer Package for Chronic Active Implantable Devices with Application to an Optogenetic Stimulator. IEEE Trans. Biomed. Eng. 2019, 67, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 0080475159. [Google Scholar]
- Kim, J.; Lee, S.E.; Shin, J.; Jung, H.H.; Kim, S.J.; Chang, J.W. The Neuromodulation of Neuropathic Pain by Measuring Pain Response Rate and Pain Response Duration in Animal. J. Korean Neurosurg. Soc. 2015, 57, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Min, K.S.; Lee, C.J.; Jun, S.B.; Kim, J.; Lee, S.E.; Shin, J.; Chang, J.W.; Kim, S.J. A Liquid Crystal Polymer-Based Neuromodulation System: An Application on Animal Model of Neuropathic Pain. Neuromodul. Technol. Neural Interface 2014, 17, 160–169. [Google Scholar] [CrossRef]
- Yun, S.; Koh, C.S.; Jeong, J.; Seo, J.; Ahn, S.-H.; Choi, G.J.; Shim, S.; Shin, J.; Jung, H.H.; Chang, J.W. Remote-Controlled Fully Implantable Neural Stimulator for Freely Moving Small Animal. Electronics 2019, 8, 706. [Google Scholar] [CrossRef]
- Gosalia, K.; Weiland, J.; Humayun, M.; Lazzi, G. Thermal Elevation in the Human Eye and Head Due to the Operation of a Retinal Prosthesis. IEEE Trans. Biomed. Eng. 2004, 51, 1469–1477. [Google Scholar] [CrossRef]
- Hori, H.; Moretti, G.; Rebora, A.; Crovato, F. The Thickness of Human Scalp: Normal and Bald. J. Investig. Dermatol. 1972, 58, 396–399. [Google Scholar] [CrossRef]
- Hasgall, P.A.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Lloyd, B.; Gosselin, M.C.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues; Version 4.0; ScienceOpen, Inc.: Berlin, Germany, 2018. [Google Scholar]
- Xu, Z.; Li, Q.; He, W. Analytical Solution for the Forward Problem of Magnetic Induction Tomography with Multi-Layer Sphere Model. In Proceedings of the International Conference on Intelligent Computing for Sustainable Energy and Environment 2010, Wuxi, China, 17–20 September 2010; pp. 42–50. [Google Scholar]
- Mahinda, H.A.M.; Murty, O.P. Variability in Thickness of Human Skull Bones and Sternum—An Autopsy Experience. J. Forensic Med. Toxicol. 2009, 26, 26–31. [Google Scholar]
- Decosterd, I.; Woolf, C.J. Spared Nerve Injury: An Animal Model of Persistent Peripheral Neuropathic Pain. Pain 2000, 87, 149–158. [Google Scholar] [CrossRef]
- Radiofrequency Radiation Exposure Limits. Available online: https://www.ecfr.gov/Current/Title-47/Section-1.1310 (accessed on 13 September 2023).
- Yuan, R.; Liu, Y.; Tan, Q.; Ge, J.; Chen, P.; Guo, Q.; Hu, W. An All-Liquid-Crystal Strategy for Fast Orbital Angular Momentum Encoding and Optical Vortex Steering. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 1–6. [Google Scholar] [CrossRef]
- Jeong, J.; Bae, S.H.; Min, K.S.; Seo, J.-M.; Chung, H.; Kim, S.J. A Miniaturized, Eye-Conformable, and Long-Term Reliable Retinal Prosthesis Using Monolithic Fabrication of Liquid Crystal Polymer (LCP). IEEE Trans. Biomed. Eng. 2014, 62, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, J.; Jeong, J.; Gwon, T.M.; Choi, G.J.; Lee, S.E.; Kim, J.; Jun, S.B.; Chang, J.W.; Kim, S.J. High Charge Storage Capacity Electrodeposited Iridium Oxide Film on Liquid Crystal Polymer-Based Neural Electrodes. Sens. Mater. 2016, 28, 243–260. [Google Scholar]
- Park, R.; Lee, D.H.; Koh, C.S.; Kwon, Y.W.; Chae, S.Y.; Kim, C.; Jung, H.H.; Jeong, J.; Hong, S.W. Laser-Assisted Structuring of Graphene Films with Biocompatible Liquid Crystal Polymer for Skin/Brain-Interfaced Electrodes. Adv. Health Mater. 2023, 2301753. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, J.-H.; Jeong, J.; Gwon, T.M.; Lee, S.-H.; Kim, S.J. Novel Four-Sided Neural Probe Fabricated by a Thermal Lamination Process of Polymer Films. J. Neurosci. Methods 2017, 278, 25–35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-H.; Koh, C.S.; Park, M.; Jun, S.B.; Chang, J.W.; Kim, S.J.; Jung, H.H.; Jeong, J. Liquid Crystal Polymer-Based Miniaturized Fully Implantable Deep Brain Stimulator. Polymers 2023, 15, 4439. https://doi.org/10.3390/polym15224439
Ahn S-H, Koh CS, Park M, Jun SB, Chang JW, Kim SJ, Jung HH, Jeong J. Liquid Crystal Polymer-Based Miniaturized Fully Implantable Deep Brain Stimulator. Polymers. 2023; 15(22):4439. https://doi.org/10.3390/polym15224439
Chicago/Turabian StyleAhn, Seung-Hee, Chin Su Koh, Minkyung Park, Sang Beom Jun, Jin Woo Chang, Sung June Kim, Hyun Ho Jung, and Joonsoo Jeong. 2023. "Liquid Crystal Polymer-Based Miniaturized Fully Implantable Deep Brain Stimulator" Polymers 15, no. 22: 4439. https://doi.org/10.3390/polym15224439
APA StyleAhn, S. -H., Koh, C. S., Park, M., Jun, S. B., Chang, J. W., Kim, S. J., Jung, H. H., & Jeong, J. (2023). Liquid Crystal Polymer-Based Miniaturized Fully Implantable Deep Brain Stimulator. Polymers, 15(22), 4439. https://doi.org/10.3390/polym15224439