Micro-Finned Nanocomposite Films for Enhanced Transport Properties: Graphite Nanoplatelet-Filled Linear Low-Density Polyethylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Film Processing
2.2. Material and Film Characterization
3. Results
3.1. Processing and Microstructure
3.1.1. Melt Rheology
3.1.2. Graphite Nanoplatelets Characteristics
3.1.3. Film Microstructure
3.2. Thermogravimetric Analysis of the Film
3.3. Mechanical Analysis
3.4. Thermal Conductivity
3.5. Volume and Surface Resistivity
3.6. Electrostatic Decay Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, T.-C.; Fuh, Y.-K.; Tu, S.-X.; Lee, Y.-M. Application of Graphite Nanoplatelet-Based and Nanoparticle Composites to Thermal Interface Materials. Micro Nano Lett. 2015, 10, 296–301. [Google Scholar] [CrossRef]
- Via, M.D.; King, J.A.; Keith, J.M.; Miskioglu, I.; Cieslinski, M.J.; Anderson, J.J.; Bogucki, G.R. Tensile Modulus Modeling of Carbon Black/Polycarbonate, Carbon Nanotube/Polycarbonate, and Exfoliated Graphite Nanoplatelet/Polycarbonate Composites. J. Appl. Polym. Sci. 2012, 124, 2269–2277. [Google Scholar] [CrossRef]
- Sandor, M. Plastic Encapsulated Microcircuits (PEMs) Reliability/Usage Guidelines For Space Applications; Electronic Parts Engineering: Pasadena, CA, USA, 2000; p. 31. [Google Scholar]
- Idumah, C.I.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889. [Google Scholar] [CrossRef]
- Tonapi, S.S.; Fillion, R.; Schattenmann, F.; Cole, H.S.; Evans, J.D.; Sammakia, B. An Overview of Thermal Management for Next Generation Microelectronic Devices. In Proceedings of the Advanced Semiconductor Manufacturing Conference and Workshop, 2003 IEEEI/SEMI, Munich, Germany, 31 March 2003–1 April 2003. [Google Scholar]
- Thomassin, J.-M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/Carbon Based Composites as Electromagnetic Interference (EMI) Shielding Materials. Mater. Sci. Eng. R: Rep. 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Kanhere, S.V.; McTyer, J.; Owens, C.; Ogale, A.A. Mesophase Pitch-Based Carbon Fiber Composites For Electromagnetic Shielding And Electrostatic Dissipation Applications. In Proceedings of the SPE-ACCE 2022, Novi, MI, USA, 6–8 September 2022. [Google Scholar]
- Al-Ghamdi, A.A.; El-Tantawy, F.; Aal, N.A.; El-Mossalamy, E.H.; Mahmoud, W.E. Stability of New Electrostatic Discharge Protection and Electromagnetic Wave Shielding Effectiveness from Poly (Vinyl Chloride )/Graphite /Nickel Nanoconducting Composites. J. Environ. Polym. Degrad. 2009, 94, 980–986. [Google Scholar] [CrossRef]
- Jack, D.A.; Yeh, C.-S.; Liang, Z.; Li, S.; Park, J.G.; Fielding, J.C. Electrical Conductivity Modeling and Experimental Study of Densely Packed SWCNT Networks. Nanotechnology 2010, 21, 195703. [Google Scholar] [CrossRef]
- Sloan, J. Coming to Carbon Fiber: Low-Cost Mesophase Pitch Precursor. Composites World Weekly, 10 May 2016. [Google Scholar]
- Xiang, J.; Drzal, L. Thermal Conductivity of Exfoliated Graphite Nanoplatelet. Carbon 2011, 49, 773–778. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nüesch, F.A.; Chu, B.T.T. Comparing Carbon Nanotubes and Graphene Nanoplatelets as Reinforcements in Polyamide 12 Composites. Nanotechnology 2011, 22, 275714. [Google Scholar] [CrossRef]
- Yu, A.; Ramesh, P.; Itkis, M.E.; Bekyarova, E.; Haddon, R.C. Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials. J. Phys. Chem. C 2007, 111, 7565–7569. [Google Scholar] [CrossRef]
- Han, X.; Chen, T.; Zhao, Y.; Gao, J.; Sang, Y.; Xiong, H.; Chen, Z. Relationship between the Microstructure and Performance of Graphene/Polyethylene Composites Investigated by Positron Annihilation Lifetime Spectroscopy. Nanomaterials 2021, 11, 2990. [Google Scholar] [CrossRef]
- Kim, S.; Seo, J.; Drzal, L.T. Improvement of Electric Conductivity of LLDPE Based Nanocomposite by Paraffin Coating on Exfoliated Graphite Nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2010, 41, 581–587. [Google Scholar] [CrossRef]
- Gentile, F.; Coppedè, N.; Tarabella, G.; Villani, M.; Calestani, D.; Candeloro, P.; Iannotta, S.; Di Fabrizio, E. Microtexturing of the Conductive PEDOT:PSS Polymer for Superhydrophobic Organic Electrochemical Transistors. BioMed Res. Int. 2014, 2014, 302694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, L.; Wu, H.; Guo, S. Enhanced Thermally Conductivity and Mechanical Properties of Polyethylene (PE)/Boron Nitride (BN) Composites through Multistage Stretching Extrusion. Compos. Sci. Technol. 2013, 89, 24–28. [Google Scholar] [CrossRef]
- Güzdemir, Ö.; Kanhere, S.; Bermudez, V.; Ogale, A.A. Boron Nitride-Filled Linear Low-Density Polyethylene for Enhanced Thermal Transport: Continuous Extrusion of Micro-Textured Films. Polymers 2021, 13, 3393. [Google Scholar] [CrossRef] [PubMed]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2014.
- ASTM E1461-13; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM: West Conshohocken, PA, USA, 2013.
- ASTM D257-14; Standard Test Methods for DC Resistance or Conductance of Insulating Materials. ASTM: West Conshohocken, PA, USA, 2021.
- Test Method 4046; Electrostatic Properties. Department of Defense: Philadelphia, PA, USA, 2008.
- Mardles, E.W.J. Viscosity of Suspensions and the Einstein Equation. Nature 1940, 145, 970. [Google Scholar] [CrossRef]
- Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Polychronopoulos, N.D.; Charlton, Z.; Suwanda, D.; Vlachopoulos, J. Measurements and Comparison to Predictions of Viscosity of Heavily Filled HDPE with Natural Fibers. Adv. Polym. Technol. 2018, 37, 1161–1167. [Google Scholar] [CrossRef]
- Metzner, A.B. Rheology of Suspensions in Polymeric Liquids. J. Rheol. 1985, 29, 739–775. [Google Scholar] [CrossRef]
- Choi, H.J.; Ray, S.S. A Review on Melt-State Viscoelastic Properties of Polymer Nanocomposites. J. Nanosci. Nanotechnol. 2011, 11, 8421–8449. [Google Scholar] [CrossRef]
- Guerra, V.; Wan, C.; Degirmenci, V.; Sloan, J.; Presvytis, D.; Watson, M.; McNally, T. Characterisation of Graphite Nanoplatelets (GNP) Prepared at Scale by High-Pressure Homogenisation. J. Mater. Chem. C 2019, 7, 6383–6390. [Google Scholar] [CrossRef]
- Thermal and Electrical Properties of PE. Available online: https://www.qenos.com/internet/home.nsf/(LUImages)/Tech%20Guide:%20Thermal%20and%20electrical%20properties%20of%20PE/$File/144%20QEN%20eX%20TN%20Thermal%20&%20Electrical%20properties%20of%20PE.pdf (accessed on 27 September 2023).
- Chaudhry, A.U.; Lonkar, S.P.; Chudhary, R.G.; Mabrouk, A.; Abdala, A.A. Thermal, Electrical, and Mechanical Properties of Highly Filled HDPE/Graphite Nanoplatelets Composites. Mater. Today Proc. 2020, 29, 704–708. [Google Scholar] [CrossRef]
- Electrical Properties of Plastics. Available online: https://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf (accessed on 27 September 2023).
- Pandey, R.K.; Ao, C.K.; Lim, W.; Sun, Y.; Di, X.; Nakanishi, H.; Soh, S. The Relationship between Static Charge and Shape. ACS Cent. Sci. 2020, 6, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Rosner, R.B. Conductive Materials for ESD Applications: An Overview. IEEE Trans. Device Mater. Reliab. 2001, 1, 9–16. [Google Scholar] [CrossRef]
- Villacorta, B.S. Effect of Graphitic Carbon Nanomodifiers on the Electromagnetic Shielding Effectiveness of Linear Low Density Polyethylene Nanocomposites. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2013. [Google Scholar]
- Robinson, K.S. Variation in Static Decay Time with Surface Resistivity. IEEE Trans. Ind. Appl. 2013, 49, 2300–2307. [Google Scholar] [CrossRef]
GNP Volume Fraction (%) | Power-Law Exponent, n | Power-Law Flow Index, Pa.sn |
---|---|---|
0 | 0.91 | 544 |
10 | 0.66 | 1037 |
20 | 0.11 | 2754 |
30 | 0.17 | 3719 |
Material | Average 1% Cut-Off Average Decay Time (s) | |
---|---|---|
RoHS-compliant ESD shielding bag | Below Detection Limit (≤0.01 s) | |
GNP content (vol%) | Nontextured | Textured |
0 | 531 | 17 |
10 | 1.29 | 0.02 |
20 | below detection limit | below detection limit |
30 | below detection limit | below detection limit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanhere, S.V.; Güzdemir, Ö.; Ogale, A.A. Micro-Finned Nanocomposite Films for Enhanced Transport Properties: Graphite Nanoplatelet-Filled Linear Low-Density Polyethylene. Polymers 2023, 15, 4411. https://doi.org/10.3390/polym15224411
Kanhere SV, Güzdemir Ö, Ogale AA. Micro-Finned Nanocomposite Films for Enhanced Transport Properties: Graphite Nanoplatelet-Filled Linear Low-Density Polyethylene. Polymers. 2023; 15(22):4411. https://doi.org/10.3390/polym15224411
Chicago/Turabian StyleKanhere, Sagar V., Özgün Güzdemir, and Amod A. Ogale. 2023. "Micro-Finned Nanocomposite Films for Enhanced Transport Properties: Graphite Nanoplatelet-Filled Linear Low-Density Polyethylene" Polymers 15, no. 22: 4411. https://doi.org/10.3390/polym15224411
APA StyleKanhere, S. V., Güzdemir, Ö., & Ogale, A. A. (2023). Micro-Finned Nanocomposite Films for Enhanced Transport Properties: Graphite Nanoplatelet-Filled Linear Low-Density Polyethylene. Polymers, 15(22), 4411. https://doi.org/10.3390/polym15224411