Structure–Property Relationship, Glass Transition, and Crystallization Behaviors of Conjugated Polymers
Abstract
:1. Introduction
2. The Structure–Property Relationship of the Conjugated Polymers
2.1. The Charge Transport in Conjugated Polymers
2.2. The Multi-Scale Aggregated Structure and the Charge Transport of Conjugated Polymers
3. The Glass Transition of the Conjugated Polymers
3.1. The Glass Transition in Polymers
3.2. Experimental Techniques for Measuring the Tg in Polymers
3.3. The Fictive Temperature in Glass Transition
3.4. The Measurements of Tgs in Conjugated Polymers
3.4.1. The Effect of the Lengths and Branches of the Side Groups on Tg of Conjugated Polymers
3.4.2. The Influence of the Rigidity of the Main Chains on Tg of Conjugated Polymers
4. The Crystallization Behaviors of the Conjugated Polymers
4.1. The Multi-Scale Morphology and Crystallization of the Conjugated Polymers
4.2. The Effect of Side Chains on the Crystallization of Conjugated Polymers
5. Conclusions and Outlook
5.1. Thermal Behavior Studies of Other Conjugated Polymers
5.2. Glass Transition Studies of Conjugated Polymers
5.3. Crystallization Behavior Studies of Conjugated Polymers
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Rogers, J.A.; Bao, Z.; Makhija, A.; Braun, P. Printing Process Suitable for Reel-to-Reel Production of High-Performance Organic Transistors and Circuits. Adv. Mater. 1999, 11, 741–745. [Google Scholar] [CrossRef]
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Brütting, W. Introduction to the physics of organic semiconductors. Phys. Org. Semicond. 2005, 1–14. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef]
- Facchetti, A.; Letizia, J.; Yoon, M.-H.; Mushrush, M.; Katz, H.E.; Marks, T.J. Synthesis and characterization of diperfluorooctyl-substituted phenylene—Thiophene oligomers as n-type semiconductors. Molecular structure—Film microstructure—Mobility relationships, organic field-effect transistors, and transistor nonvolatile memory elements. Chem. Mater. 2004, 16, 4715–4727. [Google Scholar]
- Illig, S.; Eggeman, A.S.; Troisi, A.; Jiang, L.; Warwick, C.; Nikolka, M.; Schweicher, G.; Yeates, S.G.; Henri Geerts, Y.; Anthony, J.E.; et al. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nat. Commun. 2016, 7, 10736. [Google Scholar] [CrossRef]
- Ishii, H.; Kobayashi, N.; Hirose, K. Carrier transport calculations of organic semiconductors with static and dynamic disorder. Jpn. J. Appl. Phys. 2019, 58, 110501. [Google Scholar] [CrossRef]
- Podzorov, V. Charge Carrier Transport in Single-Crystal Organic Field-Effect Transistors; CRC Press: Boca Raton, FL, USA, 2007; Volume 128, pp. 27–72. [Google Scholar]
- Salleo, A. Charge transport in polymeric transistors. Mater. Today 2007, 10, 38–45. [Google Scholar] [CrossRef]
- Noriega, R.; Salleo, A.; Spakowitz, A.J. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers. Proc. Natl. Acad. Sci. USA 2013, 110, 16315–16320. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Sadhanala, A.; Abdi-Jalebi, M.; Thomas, T.H.; Ren, X.; Zhang, T.; Chen, H.; Carey, R.L.; Wang, Q.; Senanayak, S.P.; et al. Linking Glass-Transition Behavior to Photophysical and Charge Transport Properties of High-Mobility Conjugated Polymers. Adv. Funct. Mater. 2021, 31, 2007359. [Google Scholar] [CrossRef]
- Westenhoff, S.; Beenken, W.J.; Yartsev, A.; Greenham, N.C. Conformational disorder of conjugated polymers. J. Chem. Phys. 2006, 125, 154903. [Google Scholar] [CrossRef]
- Lee, J.; Chung, J.W.; Jang, J.; Kim, D.H.; Park, J.-I.; Lee, E.; Lee, B.-L.; Kim, J.-Y.; Jung, J.Y.; Park, J.S.; et al. Influence of alkyl side chain on the crystallinity and trap density of states in thiophene and thiazole semiconducting copolymer based inkjet-printed field-effect transistors. Chem. Mater. 2013, 25, 1927–1934. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tsurumi, J.; Hinkel, F.; Okada, Y.; Soeda, J.; Zajączkowski, W.; Baumgarten, M.; Pisula, W.; Matsui, H.; Müllen, K.; et al. Transition between band and hopping transport in polymer field-effect transistors. Adv. Mater. 2014, 26, 8169–8173. [Google Scholar] [CrossRef] [PubMed]
- Khim, D.; Luzio, A.; Bonacchini, G.E.; Pace, G.; Lee, M.J.; Noh, Y.Y.; Caironi, M. Uniaxial Alignment of Conjugated Polymer Films for High-Performance Organic Field-Effect Transistors. Adv. Mater. 2018, 30, 1705463. [Google Scholar] [CrossRef]
- Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F.P.; Stingelin, N.; Smith, P.; Toney, M.F.; Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 2013, 12, 1038–1044. [Google Scholar] [CrossRef]
- Mollinger, S.A.; Salleo, A.; Spakowitz, A.J. Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation. ACS Cent. Sci. 2016, 2, 910–915. [Google Scholar] [CrossRef]
- Mollinger, S.A.; Krajina, B.A.; Noriega, R.; Salleo, A.; Spakowitz, A.J. Percolation, tie-molecules, and the microstructural determinants of charge transport in semicrystalline conjugated polymers. ACS Macro Lett. 2015, 4, 708–712. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Brown, N. The effect of molecular weight on slow crack growth in linear polyethylene homopolymers. J. Mater. Sci. 1988, 23, 3648–3655. [Google Scholar] [CrossRef]
- Hiszpanski, A.M.; Loo, Y.-L. Directing the film structure of organic semiconductors via post-deposition processing for transistor and solar cell applications. Energy Environ. Sci. 2014, 7, 592–608. [Google Scholar] [CrossRef]
- Ko, S.; Hoke, E.T.; Pandey, L.; Hong, S.; Mondal, R.; Risko, C.; Yi, Y.; Noriega, R.; McGehee, M.D.; Brédas, J.-L.; et al. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives. J. Am. Chem. Soc. 2012, 134, 5222–5232. [Google Scholar] [CrossRef] [PubMed]
- Tumbleston, J.R.; Collins, B.A.; Yang, L.; Stuart, A.C.; Gann, E.; Ma, W.; You, W.; Ade, H. The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photonics 2014, 8, 385–391. [Google Scholar] [CrossRef]
- Vohra, V.; Kawashima, K.; Kakara, T.; Koganezawa, T.; Osaka, I.; Takimiya, K.; Murata, H. Efficient inverted polymer solar cells employing favourable molecular orientation. Nat. Photonics 2015, 9, 403–408. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Dou, L.; Chang, W.-H.; Duan, H.-S.; Bob, B.; Li, G.; Yang, Y. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 2015, 9, 190–198. [Google Scholar] [CrossRef]
- Kline, R.J.; DeLongchamp, D.M.; Fischer, D.A.; Lin, E.K.; Heeney, M.; McCulloch, I.; Toney, M.F. Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Appl. Phys. Lett. 2007, 90, 062117. [Google Scholar] [CrossRef]
- Jimison, L.H.; Salleo, A.; Chabinyc, M.L.; Bernstein, D.P.; Toney, M.F. Correlating the microstructure of thin films of poly[5,5-bis(3-dodecyl-2-thienyl)-2,2-bithiophene] with charge transport: Effect of dielectric surface energy and thermal annealing. Phys. Rev. B 2008, 78, 125319. [Google Scholar] [CrossRef]
- Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644. [Google Scholar] [CrossRef]
- Huang, Y.C.; Tsao, C.S.; Chuang, C.M.; Lee, C.H.; Hsu, F.H.; Cha, H.C.; Chen, C.Y.; Lin, T.H.; Su, C.J.; Jeng, U.S.; et al. Small- and Wide-Angle X-ray Scattering Characterization of Bulk Heterojunction Polymer Solar Cells with Different Fullerene Derivatives. J. Phys. Chem. C 2012, 116, 10238–10244. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, L.L. A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance. Acc. Chem. Res. 2010, 43, 1227–1236. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.; Li, G.; Ray, C.; Yu, L. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. J. Am. Chem. Soc. 2009, 131, 7792–7799. [Google Scholar] [CrossRef] [PubMed]
- Piliego, C.; Holcombe, T.W.; Douglas, J.D.; Woo, C.H.; Beaujuge, P.M.; Fréchet, J.M. Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells. J. Am. Chem. Soc. 2010, 132, 7595–7597. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, J.A.; Beiley, Z.M.; Hoke, E.T.; Mateker, W.R.; Douglas, J.D.; Collins, B.A.; Tumbleston, J.R.; Graham, K.R.; Amassian, A.; Ade, H.; et al. The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2013, 3, 364–374. [Google Scholar] [CrossRef]
- Rivnay, J.; Steyrleuthner, R.; Jimison, L.H.; Casadei, A.; Chen, Z.; Toney, M.F.; Facchetti, A.; Neher, D.; Salleo, A. Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport. Macromolecules 2011, 44, 5246–5255. [Google Scholar] [CrossRef]
- Son, S.Y.; Park, T.; You, W. Understanding of Face-On Crystallites Transitioning to Edge-On Crystallites in Thiophene-Based Conjugated Polymers. Chem. Mater. 2021, 33, 4541–4550. [Google Scholar] [CrossRef]
- Mckenn, G.B.; Simo, S.L. 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers. Macromolecules 2017, 50, 6333–6361. [Google Scholar] [CrossRef]
- Fox, T.G., Jr.; Flory, P.J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 1950, 21, 581–591. [Google Scholar] [CrossRef]
- Tobolsky, A.V.; Callinan, T.D. Properties and structure of polymers. J. Electrochem. Soc. 1960, 107, 243C. [Google Scholar] [CrossRef]
- Shen, M.C.; Eisenberg, A. Glass transitions in polymers. Prog. Solid State Chem. 1967, 3, 407–481. [Google Scholar] [CrossRef]
- Privalko, V.; Lipatov, Y.S. Glass transition and chain flexibility of linear polymers. J. Macromol. Sci. Part B 1974, 9, 551–564. [Google Scholar] [CrossRef]
- Dudowicz, J.; Freed, K.F.; Douglas, J.F. Fragility of glass-forming polymer liquids. J. Phys. Chem. B 2005, 109, 21350–21356. [Google Scholar] [CrossRef] [PubMed]
- Cowie, J.M.G.; Arrighi, V. Polymers: Chemistry and Physics of Modern Materials; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Halary, J.L.; Lauprêtre, F.; Monnerie, L. Polymer Materials: Macroscopic Properties and Molecular Interpretations; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pankaj, S.; Hempel, E.; Beiner, M. Side-Chain Dynamics and Crystallization in a Series of Regiorandom Poly(3-alkylthiophenes). Macromolecules 2009, 42, 716–724. [Google Scholar] [CrossRef]
- Wunderlich, B. Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Prog. Polym. Sci. 2003, 28, 383–450. [Google Scholar] [CrossRef]
- Androsch, R.; Wunderlich, B. Specific reversible melting of polymers. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 2039–2051. [Google Scholar] [CrossRef]
- Martín, J.; Stingelin, N.; Cangialosi, D. Direct calorimetric observation of the rigid amorphous fraction in a semiconducting polymer. J. Phys. Chem. Lett. 2018, 9, 990–995. [Google Scholar] [CrossRef]
- Remy, R.; Wei, S.; Campos, L.M.; Mackay, M.E. Three-phase morphology of semicrystalline polymer semiconductors: A quantitative analysis. ACS Macro Lett. 2015, 4, 1051–1055. [Google Scholar] [CrossRef]
- Sharma, A.; Pan, X.; Campbell, J.A.; Andersson, M.R.; Lewis, D.A. Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cells. Macromolecules 2017, 50, 3347–3354. [Google Scholar] [CrossRef]
- Haines, P.; Reading, M.; Wilburn, F. Differential thermal analysis and differential scanning calorimetry. In Handbook of Thermal Analysis and Calorimetry; Elsevier: Amsterdam, The Netherlands, 1998; Volume 1, pp. 279–361. [Google Scholar]
- Mark, J.E. Physical Properties of Polymers Handbook; Springer: Berlin/Heidelberg, Germany, 2007; p. 1076. [Google Scholar]
- Badrinarayanan, P.; Zheng, W.; Li, Q.; Simon, S.L. The glass transition temperature versus the fictive temperature. J. Non Cryst. Solids 2007, 353, 2603–2612. [Google Scholar] [CrossRef]
- Tool, A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946, 29, 240–253. [Google Scholar] [CrossRef]
- DeBolt, M.A.; Easteal, A.J.; Macedo, P.B.; Moynihan, C.T. Analysis of structural relaxation in glass using rate heating data. J. Am. Ceram. Soc. 1976, 59, 16–21. [Google Scholar] [CrossRef]
- Mauro, J.C.; Loucks, R.J.; Gupta, P.K. Fictive temperature and the glassy state. J. Am. Ceram. Soc. 2009, 92, 75–86. [Google Scholar] [CrossRef]
- Gardon, R.; Narayanaswamy, O. Stress and volume relaxation in annealing flat glass. J. Am. Ceram. Soc. 1970, 53, 380–385. [Google Scholar] [CrossRef]
- Shamim, N.; Koh, Y.P.; Simon, S.L.; McKenna, G.B. Glass transition temperature of thin polycarbonate films measured by flash differential scanning calorimetry. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1462–1468. [Google Scholar] [CrossRef]
- Boucher, V.M.; Cangialosi, D.; Alegría, A.; Colmenero, J. Reaching the ideal glass transition by aging polymer films. Phys. Chem. Chem. Phys. 2017, 19, 961–965. [Google Scholar] [CrossRef]
- Efremov, M.Y.; Olson, E.A.; Zhang, M.; Zhang, Z.; Allen, L.H. Glass transition in ultrathin polymer films: Calorimetric study. Phys. Rev. Lett. 2003, 91, 085703. [Google Scholar] [CrossRef] [PubMed]
- Huth, H.; Minakov, A.; Schick, C. Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 2996–3005. [Google Scholar] [CrossRef]
- Huth, H.; Minakov, A.; Serghei, A.; Kremer, F.; Schick, C. Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur. Phys. J. Spec. Top. 2007, 141, 153–160. [Google Scholar] [CrossRef]
- Zhou, D.; Huth, H.; Gao, Y.; Xue, G.; Schick, C. Calorimetric glass transition of poly (2,6-dimethyl-1,5-phenylene oxide) thin films. Macromolecules 2008, 41, 7662–7666. [Google Scholar] [CrossRef]
- Luo, S.; Chen, Y.; Sha, Y.; Xue, G.; Zhuravlev, E.; Schick, C.; Wang, X.; Zhou, D.; Li, L. Molecular weight and interfacial effect on the kinetic stabilization of ultrathin polystyrene films. Polymer 2018, 134, 204–210. [Google Scholar] [CrossRef]
- Luo, S.; Wang, T.; Ocheje, M.U.; Zhang, S.; Xu, J.; Qian, Z.; Gu, X.; Xue, G.; Rondeau-Gagné, S.; Jiang, J.; et al. Multiamorphous phases in Diketopyrrolopyrrole-based conjugated polymers: From bulk to ultrathin films. Macromolecules 2020, 53, 4480–4489. [Google Scholar] [CrossRef]
- Grassia, L.; Koh, Y.P.; Rosa, M.; Simon, S.L. Complete set of enthalpy recovery data using Flash DSC: Experiment and modeling. Macromolecules 2018, 51, 1549–1558. [Google Scholar] [CrossRef]
- Luo, S.; Li, N.; Zhang, S.; Zhang, C.; Qu, T.; Ocheje, M.U.; Xue, G.; Gu, X.; Rondeau-Gagné, S.; Hu, W.; et al. Observation of Stepwise Ultrafast Crystallization Kinetics of Donor–Acceptor Conjugated Polymers and Correlation with Field Effect Mobility. Chem. Mater. 2021, 33, 1637–1647. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Bao, Z. Stretchable and ultraflexible organic electronics. MRS Bull. 2017, 42, 93–97. [Google Scholar] [CrossRef]
- Müller, C. On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem. Mater. 2015, 27, 2740–2754. [Google Scholar] [CrossRef]
- Zhang, S.; Alesadi, A.; Selivanova, M.; Cao, Z.; Qian, Z.; Luo, S.; Galuska, L.; Teh, C.; Ocheje, M.U.; Mason, G.T.; et al. Toward the prediction and control of glass transition temperature for donor–acceptor polymers. Adv. Funct. Mater. 2020, 30, 2002221. [Google Scholar] [CrossRef]
- Chen, T.A.; Rieke, R.D. The first regioregular head-to-tail poly (3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: Nickel versus palladium catalysis of 2-bromo-5-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 1992, 114, 10087–10088. [Google Scholar] [CrossRef]
- Root, S.E.; Savagatrup, S.; Printz, A.D.; Rodriquez, D.; Lipomi, D.J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117, 6467–6499. [Google Scholar] [CrossRef]
- McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006, 5, 328–333. [Google Scholar] [CrossRef]
- Holliday, S.; Donaghey, J.E.; McCulloch, I. Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem. Mater. 2014, 26, 647–663. [Google Scholar] [CrossRef]
- O’Connor, B.; Chan, E.P.; Chan, C.; Conrad, B.R.; Richter, L.J.; Kline, R.J.; Heeney, M.; McCulloch, I.; Soles, C.L.; DeLongchamp, D.M. Correlations between mechanical and electrical properties of polythiophenes. ACS Nano 2010, 4, 7538–7544. [Google Scholar] [CrossRef]
- Xie, R.; Weisen, A.R.; Lee, Y.; Aplan, M.A.; Fenton, A.M.; Masucci, A.E.; Kempe, F.; Sommer, M.; Pester, C.W.; Colby, R.H.; et al. Glass transition temperature from the chemical structure of conjugated polymers. Nat. Commun. 2020, 11, 893. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.A.; Ni, J.M. Structure/properties of conjugated conductive polymers. 1. Neutral poly(3-alkythiophene)s. Macromolecules 1992, 25, 6081–6089. [Google Scholar] [CrossRef]
- Yazawa, K.; Inoue, Y.; Yamamoto, T.; Asakawa, N. Twist glass transition in regioregulated poly(3-alkylthiophene). Phys. Rev. B 2006, 74, 094204. [Google Scholar] [CrossRef]
- Cao, Z.; Galuska, L.; Qian, Z.; Zhang, S.; Huang, L.; Prine, N.; Li, T.; He, Y.; Hong, K.; Gu, X. The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polym. Chem. 2020, 11, 517–526. [Google Scholar] [CrossRef]
- Qian, Z.; Luo, S.; Qu, T.; Galuska, L.A.; Zhang, S.; Cao, Z.; Dhakal, S.; He, Y.; Hong, K.; Zhou, D.; et al. Influence of side-chain isomerization on the isothermal crystallization kinetics of poly(3-alkylthiophenes). J. Mater. Res. 2021, 36, 191–202. [Google Scholar] [CrossRef]
- Zhang, S.; Ocheje, M.U.; Huang, L.; Galuska, L.; Cao, Z.; Luo, S.; Cheng, Y.H.; Ehlenberg, D.; Goodman, R.B.; Zhou, D. The Critical Role of Electron-Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Adv. Electron. Mater. 2019, 5, 1800899. [Google Scholar] [CrossRef]
- Li, Y.; Tatum, W.K.; Onorato, J.W.; Zhang, Y.; Luscombe, C.K. Low Elastic Modulus and High Charge Mobility of Low-Crystallinity Indacenodithiophene-Based Semiconducting Polymers for Potential Applications in Stretchable Electronics. Macromolecules 2018, 51, 6352–6358. [Google Scholar] [CrossRef]
- Schab-Balcerzak, E.; Grucela-Zajac, M.; Krompiec, M.; Niestroj, A.; Janeczek, H. New low band gap compounds comprised of naphthalene diimide and imine units. Synth. Met. 2012, 162, 543–553. [Google Scholar] [CrossRef]
- Mei, J.; Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 2014, 26, 604–615. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Xie, R.; Aplan, M.P.; Caggiano, N.J.; Weisen, A.R.; Su, T.; Müller, C.; Segad, M.; Colby, R.H.; Gomez, E.D. Local chain alignment via nematic ordering reduces chain entanglement in conjugated polymers. Macromolecules 2018, 51, 10271–10284. [Google Scholar] [CrossRef]
- Xie, R.; Colby, R.H.; Gomez, E.D. Connecting the mechanical and conductive properties of conjugated polymers. Adv. Electron. Mater. 2018, 4, 1700356. [Google Scholar] [CrossRef]
- Qian, Z.; Cao, Z.; Galuska, L.; Zhang, S.; Xu, J.; Gu, X. Glass transition phenomenon for conjugated polymers. Macromol. Chem. Phys. 2019, 220, 1900062. [Google Scholar] [CrossRef]
- Guo, C.; Lee, Y.; Lin, Y.-H.; Strzalka, J.; Wang, C.; Hexemer, A.; Jaye, C.; Fischer, D.A.; Verduzco, R.; Wang, Q.; et al. Photovoltaic performance of block copolymer devices is independent of the crystalline texture in the active layer. Macromolecules 2016, 49, 4599–4608. [Google Scholar] [CrossRef]
- Lu, C.; Lee, W.Y.; Gu, X.; Xu, J.; Chou, H.H.; Yan, H.; Chiu, Y.C.; He, M.; Matthews, J.R.; Niu, W.; et al. Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly(tetrathienoacene-diketopyrrolopyrrole) polymers. Adv. Electron. Mater. 2017, 3, 1600311. [Google Scholar] [CrossRef]
- Xie, R.; Lee, Y.; Aplan, M.P.; Caggiano, N.J.; Müller, C.; Colby, R.H.; Gomez, E.D. Glass transition temperature of conjugated polymers by oscillatory shear rheometry. Macromolecules 2017, 50, 5146–5154. [Google Scholar] [CrossRef]
- Vakhshouri, K.; Gomez, E.D. Effect of crystallization kinetics on microstructure and charge transport of polythiophenes. Macromol. Rapid Commun. 2012, 33, 2133–2137. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Hoppe, H.; Erb, T.; Günes, S.; Gobsch, G.; Sariciftci, N.S. Effects of annealing on the nanomorphology and performance of poly (alkylthiophene): Fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 2007, 17, 1071–1078. [Google Scholar] [CrossRef]
- Lee, J.K.; Ma, W.L.; Brabec, C.J.; Yuen, J.; Moon, J.S.; Kim, J.Y.; Lee, K.; Bazan, G.C.; Heeger, A.J. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 2008, 130, 3619–3623. [Google Scholar] [CrossRef]
- Vakhshouri, K.; Smith, B.H.; Chan, E.P.; Wang, C.; Salleo, A.; Wang, C.; Hexemer, A.; Gomez, E.D. Signatures of intracrystallite and intercrystallite limitations of charge transport in polythiophenes. Macromolecules 2016, 49, 7359–7369. [Google Scholar] [CrossRef]
- Balar, N.; Rech, J.J.; Siddika, S.; Song, R.; Schrickx, H.M.; Sheikh, N.; Ye, L.; Megret Bonilla, A.; Awartani, O.; Ade, H.; et al. Resolving the molecular origin of mechanical relaxations in donor–acceptor polymer semiconductors. Adv. Funct. Mater. 2022, 32, 2105597. [Google Scholar] [CrossRef]
- Kline, R.J.; DeLongchamp, D.M.; Fischer, D.A.; Lin, E.K.; Richter, L.J.; Chabinyc, M.L.; Toney, M.F.; Heeney, M.; McCulloch, I. Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 2007, 40, 7960–7965. [Google Scholar] [CrossRef]
- Balar, N.; Siddika, S.; Kashani, S.; Peng, Z.; Rech, J.J.; Ye, L.; You, W.; Ade, H.; O’Connor, B.T. Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chem. Mater. 2020, 32, 6540–6549. [Google Scholar] [CrossRef]
- Dimov, I.B.; Moser, M.; Malliaras, G.G.; McCulloch, I. Semiconducting polymers for neural applications. Chem. Rev. 2022, 122, 4356–4396. [Google Scholar]
- Lu, W.; Wang, R.; Li, R.; Wang, Y.; Wang, Q.; Qin, Y.; Chen, Y.; Lai, W.; Zhang, X. Stable Ultrathin Ag Electrodes by Tailoring the Surface of Plastic Substrates for Flexible Organic Light-Emitting Devices. ACS Appl. Mater. Interfaces 2022, 14, 55905–55914. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Awartani, O.; O’Connor, B.; Zikry, M.A. A direct correlation of x-ray diffraction orientation distributions to the in-plane stiffness of semi-crystalline organic semiconducting films. Appl. Phys. Lett. 2016, 108, 108–111. [Google Scholar] [CrossRef]
- Gao, Y.; Bai, J.; Sui, Y.; Han, Y.; Deng, Y.; Tian, H.; Geng, Y.; Wang, F. High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation: Influence of Thiophene Moieties and Side Chains. Macromolecules 2018, 51, 8752–8760. [Google Scholar] [CrossRef]
- Starr, F.W.; Sastry, S.; Douglas, J.F.; Glotzer, S.C. What do we learn from the local geometry of glass-forming liquids? Phys. Rev. Lett. 2002, 89, 125501. [Google Scholar] [CrossRef]
- Snyder, C.R.; Nieuwendaal, R.C.; DeLongchamp, D.M.; Luscombe, C.K.; Sista, P.; Boyd, S.D. Quantifying crystallinity in high molar mass poly (3-hexylthiophene). Macromolecules 2014, 47, 3942–3950. [Google Scholar] [CrossRef]
- Marrocchi, A.; Lanari, D.; Facchetti, A.; Vaccaro, L. Poly(3-hexylthiophene): Synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ. Sci. 2012, 5, 8457–8474. [Google Scholar] [CrossRef]
- DeLongchamp, D.M.; Vogel, B.M.; Jung, Y.; Gurau, M.C.; Richter, C.A.; Kirillov, O.A.; Obrzut, J.; Fischer, D.A.; Sambasivan, S.; Richter, L.J.; et al. Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem. Mater. 2005, 17, 5610–5612. [Google Scholar] [CrossRef]
- Moule, A.J.; Neher, D.; Turner, S.T. P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Schulz, G.L.; Ludwigs, S. Controlled crystallization of conjugated polymer films from solution and solvent vapor for polymer electronics. Adv. Funct. Mater. 2017, 27, 1603083. [Google Scholar] [CrossRef]
- Jimison, L.H.; Toney, M.F.; McCulloch, I.; Heeney, M.; Salleo, A. Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 2009, 21, 1568–1572. [Google Scholar] [CrossRef]
- Reiter, G.; Strobl, G.R. Progress in Understanding of Polymer Crystallization; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1, p. 714. [Google Scholar]
- Lu, G.; Li, L.; Yang, X. Morphology and Crystalline Transition of Poly(3-butylthiophene) Associated with Its Polymorphic Modifications. Macromolecules 2008, 41, 2060–2070. [Google Scholar] [CrossRef]
- Storks, K.H. An Electron Diffraction Examination of Some Linear High Polymers. J. Am. Chem. Soc. 2002, 60, 1753–1761. [Google Scholar] [CrossRef]
- Keller, A. A note on single crystals in polymers: Evidence for a folded chain configuration. Philos. Mag. J. Theor. Exp. Appl. Phys. 1957, 2, 1171–1175. [Google Scholar] [CrossRef]
- Flory, P.J. On the Morphology of the Crystalline State in Polymers. J. Am. Chem. Soc. 1962, 84, 2857–2867. [Google Scholar] [CrossRef]
- Lauritzen, J.I.; Hoffman, J.D. Formation of Polymer Crystals with Folded Chains from Dilute Solution. J. Chem. Phys. 1959, 31, 1680–1681. [Google Scholar] [CrossRef]
- Heeger, A.J. Semiconducting polymers: The third generation. Chem. Soc. Rev. 2010, 39, 2354–2371. [Google Scholar] [CrossRef]
- Chivers, R.; Barham, P.; Martinez-Salazar, J.; Keller, A. A new look at the crystallization of polyethylene. II. Crystallization from the melt at low supercoolings. J. Polym. Sci. Polym. Phys. Ed. 1982, 20, 1717–1732. [Google Scholar] [CrossRef]
- Kline, R.J.; Mcgehee, M.D.; Kadnikova, E.N.; Liu, J.; Toney, M.F. Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Macromolecules 2005, 38, 3312–3319. [Google Scholar] [CrossRef]
- Brinkmann, M. Structure and morphology control in thin films of regioregular poly (3-hexylthiophene). J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1218–1233. [Google Scholar] [CrossRef]
- Michael, Z.; Bao-Hua, G.; Jun, X. A Review on Polymer Crystallization Theories. Crystals 2016, 7, 4. [Google Scholar]
- Barham, P.; Chivers, R.; Jarvis, D.; Martinez-Salazar, J.; Keller, A. A new look at the crystallization of polyethylene. I. The initial fold length of melt-crystallized material. J. Polym. Sci. Polym. Lett. Ed. 1981, 19, 539–547. [Google Scholar] [CrossRef]
- Hu, W. Polymer Crystallization. Polym. Phys. A Mol. Approach 2013, 187–221. [Google Scholar] [CrossRef]
- Kim, J.; McHugh, S.K.; Swager, T.M. Nanoscale fibrils and grids: Aggregated structures from rigid-rod conjugated polymers. Macromolecules 1999, 32, 1500–1507. [Google Scholar] [CrossRef]
- Samorí, P.; Francke, V.; Müllen, K.; Rabe, J.P. Self-Assembly of a Conjugated Polymer: From Molecular Rods to a Nanoribbon Architecture with Molecular Dimensions. Chem. A Eur. J. 1999, 5, 2312–2317. [Google Scholar] [CrossRef]
- Hennebicq, E.; Pourtois, G.; Scholes, G.D.; Herz, L.M.; Russell, D.M.; Silva, C.; Setayesh, S.; Grimsdale, A.C.; Müllen, K.; Brédas, J.-L.; et al. Exciton migration in rigid-rod conjugated polymers: An improved Förster model. J. Am. Chem. Soc. 2005, 127, 4744–4762. [Google Scholar] [CrossRef]
- Bunz, U.H. Poly(aryleneethynylene)s: Syntheses, properties, structures, and applications. Chem. Rev. 2000, 100, 1605–1644. [Google Scholar] [CrossRef]
- Po, R.; Bernardi, A.; Calabrese, A.; Carbonera, C.; Corso, G.; Pellegrino, A. From lab to fab: How must the polymer solar cell materials design change?—An industrial perspective. Energy Environ. Sci. 2014, 7, 925–943. [Google Scholar] [CrossRef]
- Espinosa, N.; Hösel, M.; Jørgensen, M.; Krebs, F.C. Large scale deployment of polymer solar cells on land, on sea and in the air. Energy Environ. Sci. 2014, 7, 855–866. [Google Scholar] [CrossRef]
- Kuei, B.; Gomez, E.D. Chain conformations and phase behavior of conjugated polymers. Soft Matter 2017, 13, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kalin, A.J.; Yuan, T.; Al-Hashimi, M.; Fang, L. Fully conjugated ladder polymers. Chem. Sci. 2017, 8, 2503–2521. [Google Scholar] [CrossRef] [PubMed]
- Cotts, P.M.; Swager, T.M.; Zhou, Q. Equilibrium flexibility of a rigid linear conjugated polymer. Macromolecules 1996, 29, 7323–7328. [Google Scholar] [CrossRef]
- Mena-Osteritz, E.; Meyer, A.; Langeveld-Voss, B.M.; Janssen, R.A.; Meijer, E.; Bäuerle, P. Two-dimensional crystals of poly(3-alkyl-thiophene)s: Direct visualization of polymer folds in submolecular resolution. Angew. Chem. Int. Ed. 2000, 39, 2679–2684. [Google Scholar] [CrossRef]
- Miura, T.; Kishi, R.; Mikami, M.; Tanabe, Y. Effect of rigidity on the crystallization processes of short polymer melts. Phys. Rev. E 2001, 63, 061807. [Google Scholar]
- Kos, P.I.; Ivanov, V.A.; Chertovich, A.V. Crystallization of semiflexible polymers in melts and solutions. Soft Matter 2021, 17, 2392–2403. [Google Scholar] [CrossRef]
- Yokota, H.; Kawakatsu, T. Nucleation theory of polymer crystallization with conformation entropy. Polymer 2020, 186, 121975. [Google Scholar] [CrossRef]
- Carpenter, J.H.; Ghasemi, M.; Gann, E.; Angunawela, I.; Stuard, S.J.; Rech, J.J.; Ritchie, E.; O’Connor, B.T.; Atkin, J.; You, W.; et al. Competition between Exceptionally Long-Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties. Adv. Funct. Mater. 2019, 29, 1806977. [Google Scholar] [CrossRef]
- Panzer, F.; Bässler, H.; Köhler, A. Temperature induced order–disorder transition in solutions of conjugated polymers probed by optical spectroscopy. J. Phys. Chem. Lett. 2017, 8, 114–125. [Google Scholar] [CrossRef]
- Northrup, J.E. Atomic and electronic structure of polymer organic semiconductors: P3HT, PQT, and PBTTT. Phys. Rev. B 2007, 76, 245202. [Google Scholar] [CrossRef]
- Northrup, J.; Chabinyc, M.; Hamilton, R.; McCulloch, I.; Heeney, M. Theoretical and experimental investigations of a polyalkylated-thieno[3, 2-b] thiophene semiconductor. J. Appl. Phys. 2008, 104, 083705. [Google Scholar] [CrossRef]
- Chabinyc, M.L.; Toney, M.F.; Kline, R.J.; McCulloch, I.; Heeney, M. X-ray scattering study of thin films of poly(2, 5-bis (3-alkylthiophen-2-yl) thieno [3, 2-b] thiophene). J. Am. Chem. Soc. 2007, 129, 3226–3237. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, W.; Jiang, H.; Zhang, B.; Liu, G.; Chen, E.; Boue, F.; Wang, D. Chain Conformation and Liquid-Crystalline Structures of a Poly (thieno) thiophene. Macromolecules 2022, 55, 2892–2903. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Jiao, F.; Zhang, J.; Xu, W.; Zhu, D. Effects of structural order in the pristine state on the thermoelectric power-factor of doped PBTTT films. Synth. Met. 2012, 162, 788–793. [Google Scholar] [CrossRef]
- Li, L.-H.; Kontsevoi, O.Y.; Rhim, S.; Freeman, A.J. Structural, electronic, and linear optical properties of organic photovoltaic PBTTT-C14 crystal. J. Chem. Phys. 2013, 138, 164503. [Google Scholar] [CrossRef]
- Moro, S.; Siemons, N.; Drury, O.; Warr, D.A.; Moriarty, T.A.; Perdigão, L.M.; Pearce, D.; Moser, M.; Hallani, R.K.; Parker, J.; et al. The Effect of Glycol Side Chains on the Assembly and Microstructure of Conjugated Polymers. ACS Nano 2022, 16, 21303–21314. [Google Scholar] [CrossRef] [PubMed]
Polymers | Chemical Structure | Tg [°C] | Sidechain Tg [°C] | Test Method | Mn [kg/mol] | Reference |
---|---|---|---|---|---|---|
PT | 120 | DMA | [77] | |||
P3BT | 45 | DMA | 17 | [45] | ||
60 | DSC | [78] | ||||
P3HT | 12 | −87 | DMA | 10 | [45] | |
16.3 | DSC | [79] | ||||
P3OT | −13 | −65 | DMA | 21 | [45] | |
P3DT | −25 | −59 | DMA | [45] | ||
P3DDT | −18 | −49 | DMA | [45] | ||
P3(4MP)T | 36 | DSC | 20.9 | [79] | ||
P3(3MP)T | 41.4 | DSC | 17.3 | [79] | ||
P3(2MP)T | 30 | DSC | 20.5 | [80] | ||
P3(2EB)T | 43.8 | DSC | 14.1 | [80] | ||
P(DPPT) | −3.96 | −54.3 | DMA | 47 | [81] | |
Tg,r: 118 Tg,m: 23 | −43 | AC chip | 47 | [65] | ||
P(DPPTT) | 2.76 | −53 | DMA | 51 | [81] | |
Tg,r: 115 Tg,m: 27 | −43 | AC chip | 51 | [65] | ||
P(DPPTTT) | 4.11 | −52.5 | DMA | 26 | [81] | |
Tg,r: 113 Tg,m: 29 | −43 | AC chip | 44 | [65] | ||
PIDTTPD | −0.6 | DSC | 14 | [82] | ||
PIDTBTD | 17.6 | DSC | 15 | [82] | ||
PIDTBPD | −8.1 | DSC | 15 | [82] | ||
IDT-BT | 56 | −20 | DMA | 92 | [13] | |
NDT-BT | 101 | −20 | DMA | 70 | [13] | |
TBIDT-BT | 91 | −20 | DMA | 62 | [13] | |
TIF-BT | 141 | −20 | DMA | 57 | [13] | |
poly(AZ-NDI)- 3 | 124 | DSC | [83] | |||
poly(AZ-NDI)- 4 | 123 | DSC | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, T.; Nan, G.; Ouyang, Y.; Bieketuerxun, B.; Yan, X.; Qi, Y.; Zhang, Y. Structure–Property Relationship, Glass Transition, and Crystallization Behaviors of Conjugated Polymers. Polymers 2023, 15, 4268. https://doi.org/10.3390/polym15214268
Qu T, Nan G, Ouyang Y, Bieketuerxun B, Yan X, Qi Y, Zhang Y. Structure–Property Relationship, Glass Transition, and Crystallization Behaviors of Conjugated Polymers. Polymers. 2023; 15(21):4268. https://doi.org/10.3390/polym15214268
Chicago/Turabian StyleQu, Tengfei, Guangming Nan, Yan Ouyang, Bahaerguli. Bieketuerxun, Xiuling Yan, Yunpeng Qi, and Yi Zhang. 2023. "Structure–Property Relationship, Glass Transition, and Crystallization Behaviors of Conjugated Polymers" Polymers 15, no. 21: 4268. https://doi.org/10.3390/polym15214268
APA StyleQu, T., Nan, G., Ouyang, Y., Bieketuerxun, B., Yan, X., Qi, Y., & Zhang, Y. (2023). Structure–Property Relationship, Glass Transition, and Crystallization Behaviors of Conjugated Polymers. Polymers, 15(21), 4268. https://doi.org/10.3390/polym15214268