Sustainable Production of Lactic Acid from Cellulose Using Au/W-ZnO Catalysts
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Catalyst Preparation
2.2. Activity Measurements
2.3. Catalyst Characterizations
3. Results and Discussion
3.1. Catalytic Performance of Cellulose Conversion into LA
3.2. Catalyst Characterization
3.2.1. Microstructure of Catalysts
3.2.2. Electronic Properties of Catalysts
3.2.3. Acidic Sites of Catalysts
3.3. Proposed Reaction Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. Chem 2019, 5, 2520–2546. [Google Scholar] [CrossRef]
- Nakajima, K.; Noma, R.; Kitano, M.; Hara, M. Titania as an Early Transition Metal Oxide with a High Density of Lewis Acid Sites Workable in Water. J. Phys. Chem. C 2013, 117, 16028–16033. [Google Scholar] [CrossRef]
- Losito, O.; Casiello, M.; Fusco, C.; Cuadrado, H.M.; Monopoli, A.; Nacci, A.; D’Accolti, L. Eco-Friendly Catalytic Synthesis of Top Value Chemicals from Valorization of Cellulose Waste. Polymers 2023, 15, 1501. [Google Scholar] [CrossRef] [PubMed]
- John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 2009, 27, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Liu, G.; Sun, H.; Weng, Y. Polylactic Acid/Lignin Composites: A Review. Polymers 2023, 15, 2807. [Google Scholar] [CrossRef]
- Yuan, Z.; Dai, W.; Zhang, S.; Wang, F.; Jian, J.; Zeng, J.; Zhou, H. Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides. Cellulose 2022, 29, 3059–3077. [Google Scholar] [CrossRef]
- Zhao, T.; Tashiro, Y.; Sonomoto, K. Smart fermentation engineering for butanol production: Designed biomass and consolidated bioprocessing systems. Appl. Microbiol. Biot. 2019, 103, 9359–9371. [Google Scholar] [CrossRef] [PubMed]
- Wattanapaphawong, P.; Reubroycharoen, P.; Yamaguchi, A. Conversion of cellulose into lactic acid using zirconium oxide catalysts. RSC Adv. 2017, 7, 18561–18568. [Google Scholar] [CrossRef]
- Epane, G.; Laguerre, J.C.; Wadouachi, A.; Marek, D. Microwave-assisted conversion of D-glucose into lactic acid under solvent-free conditions. Green Chem. 2010, 12, 502–506. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, F.; Hu, J.; Huo, Z. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions. Bioresour. Technol. 2011, 102, 1998–2003. [Google Scholar] [CrossRef]
- Saha, B.; Abu-Omar, M.M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem. 2014, 16, 24–38. [Google Scholar] [CrossRef]
- Bicker, M.; Endres, S.; Ott, L.; Vogel, H. Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. J. Mol. Catal. A Chem. 2005, 239, 151–157. [Google Scholar] [CrossRef]
- Yang, X.; Ben, H.; Ragauskas, A.J. Recent Advances in the Synthesis of Deuterium-Labeled Compounds. Asian J. Org. Chem. 2021, 10, 2473–2485. [Google Scholar] [CrossRef]
- Yang, L.; Su, J.; Carl, S.; Lynam, J.G.; Yang, X.; Lin, H. Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Appl. Catal. B Environ. 2015, 162, 149–157. [Google Scholar] [CrossRef]
- Paulino, P.N.; Reis, O.C.; Licea, Y.E.; Albuquerque, E.M.; Fraga, M.A. Valorisation of xylose to lactic acid on morphology-controlled ZnO catalysts. Catal. Sci. Technol. 2018, 8, 4945–4956. [Google Scholar] [CrossRef]
- Xu, H.; Ye, X.; Shi, X.; Zhong, H.; He, D.; Jin, B.; Jin, F. ZnO as a simple and facile catalyst for acid-base coordination transformation of biomass-based monosaccharides into lactic acid. Mol. Catal. 2022, 522, 112241. [Google Scholar] [CrossRef]
- Van Chuc, N.; Dandach, A.; Ha, V.T.T.; Fongarland, P.; Essayem, N. ZrW catalyzed cellulose conversion in hydrothermal conditions: Influence of the calcination temperature and insights on the nature of the active phase. Mol. Catal. 2019, 476, 110518. [Google Scholar]
- Wang, A.; Zhang, T. One-Pot Conversion of Cellulose to Ethylene Glycol with Multifunctional Tungsten-Based Catalysts. Acc. Chem. Res. 2013, 46, 1377–1386. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, X.; Wang, A.; Yin, H.; Yin, H.; Cui, W. Hydrothermal conversion of high-concentrated glycerol to lactic acid catalyzed by bimetallic CuAux (x = 0.01-0.04) nanoparticles and their reaction kinetics. RSC Adv. 2017, 7, 30725–30739. [Google Scholar] [CrossRef]
- Lakshmanan, P.; Upare, P.P.; Ngoc-Thuc, L.; Hwang, Y.K.; Hwang, D.W.; Lee, U.H.; Kim, H.R.; Chang, J.-S. Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid. Appl. Catal. A Gen. 2013, 468, 260–268. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Zhao, Y.; Yu, B.; Chen, S.; Li, Y.; Hao, L.; Liu, Z. Selective oxidation of glycerol to lactic acid under acidic conditions using AuPd/TiO2 catalyst. Green Chem. 2013, 15, 1520–1525. [Google Scholar] [CrossRef]
- Chai, J.; Zhu, S.; Cen, Y.; Guo, J.; Wang, J.; Fan, W. Effect of tungsten surface density of WO3-ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Adv. 2017, 7, 8567–8574. [Google Scholar] [CrossRef]
- Rasrendra, C.B.; Fachri, B.A.; Makertihartha, I.G.B.N.; Adisasmito, S.; Heeres, H.J. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water. ChemSusChem 2011, 4, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Ten Dam, J.; Kapteijn, F.; Djanashvili, K.; Hanefeld, U. Tuning selectivity of Pt/CaCO3 in glycerol hydrogenolysis—A Design of Experiments approach. Catal. Commun. 2011, 13, 1–5. [Google Scholar] [CrossRef]
- Hossain, M.A.; Mills, K.N.; Molley, A.M.; Rahaman, M.S.; Tulaphol, S.; Lalvani, S.B.; Dong, J.; Sunkara, M.K.; Sathitsuksanoh, N. Catalytic isomerization of dihydroxyacetone to lactic acid by heat treated zeolites. Appl. Catal. A Gen. 2021, 611, 117979. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.; Zhou, J.; Ma, Q.; Liu, M.; Chen, W. Enhanced Ni/W/Ti Catalyst Stability from Ti-O-W Linkage for Effective Conversion of Cellulose into Ethylene Glycol. ACS Sustain. Chem. Eng. 2020, 8, 9650–9659. [Google Scholar] [CrossRef]
- Lange, L.E.; Obendorf, S.K. Functionalization of Cotton Fiber by Partial Etherification and Self-Assembly of Polyoxometalate Encapsulated in Cu-3(BTC)(2) Metal-Organic Framework. ACS Appl. Mater. Interfaces 2015, 7, 3974–3980. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, W.; Wang, B.; Zhang, Q.; Wan, X.; Tang, Z.; Wang, Y.; Zhu, C.; Cao, Z.; Wang, G.; et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat. Commun. 2013, 4, 2141. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Shen, Z.; Gu, M.; Chen, W.; Dong, W.; Zhang, Y. Efficient catalytic conversion of microalgae residue solid waste into lactic acid over a Fe-Sn-Beta catalyst. Sci. Total Environ. 2021, 771, 144891. [Google Scholar] [CrossRef] [PubMed]
- Reyes, L.; Abdelouahed, L.; Mohabeer, C.; Buvat, J.-C.; Taouk, B. Energetic and exergetic study of the pyrolysis of lignocellulosic biomasses, cellulose, hemicellulose and lignin. Energy Convers. Manag. 2021, 244, 114459. [Google Scholar] [CrossRef]
- Asadi, M.; Babamiri, B.; Hallaj, R.; Salimi, A. Unusual synthesis of nanostructured Zn-MOF by bipolar electrochemistry in ionic liquid-based electrolyte: Intrinsic alkaline phosphatase-like activity. Electroanal. Chem. 2022, 914, 116306. [Google Scholar] [CrossRef]
- Shao, L.; Zhou, J.; Zhang, M.; Zhang, Q.; Wang, N.; Zhu, F.; Wang, K.; Li, N. MOFs-derived hierarchical porous carbon confining the monodisperse Ni and defective WOx for efficient and stable hydrogenolysis of cellulose to ethylene glycol. Res. Chem. Intermediat. 2022, 48, 2489–2507. [Google Scholar] [CrossRef]
- Casaletto, M.P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A.M. XPS study of supported gold catalysts: The role of Au-0 and Au+delta species as active sites. Surf. Interface Anal. 2006, 38, 215–218. [Google Scholar] [CrossRef]
- Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J.G. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts. Angew. Chem. Int. Edit. 2008, 47, 8510–8513. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Pathak, D.K.; Tanwar, M.E.; Koch, J.; Pfnuer, H.; Kumar, R. Polythiophene-nanoWO(3) bilayer as an electrochromic infrared filter: A transparent heat shield. J. Mater. Chem. C 2020, 8, 1773–1780. [Google Scholar] [CrossRef]
- Xin, Q.; Jiang, L.; Yu, S.; Liu, S.; Yin, D.; Li, L.; Xie, C.; Wu, Q.; Yu, H.; Liu, Y.; et al. Bimetal Oxide Catalysts Selectively Catalyze Cellulose to Ethylene Glycol. J. Phys. Chem. C 2021, 125, 18170–18179. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Wu, S.; Cao, B.; Zheng, S. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sens. Actuat. B Chem. 2012, 169, 61–66. [Google Scholar] [CrossRef]
- Qiu, K.; Shu, Y.; Zhang, J.; Gao, L.; Xiao, G. Effective and Stable Zeolite Imidazole Framework-Supported Copper Nanoparticles (Cu/ZIF-8) for Glycerol to Lactic Acid. Catal. Lett. 2022, 152, 172–186. [Google Scholar] [CrossRef]
Catalysts | Conversion (%) | Yield Based on Carbon (%) | |||||
---|---|---|---|---|---|---|---|
LA | Ac | FA | AA | EG | PG | ||
W-ZnO | >99 | 35.7 | 3.4 | 2.7 | 2.4 | 3.2 | 9.0 |
Au/W-ZnO | >99 | 54.6 | 9.8 | 1.4 | 1.8 | 4.0 | 16.5 |
Au/W-ZnO-2 | >99 | 44.0 | 9.7 | 0.8 | 1.2 | 5.2 | 13.9 |
Au/W-ZnO-4 | >99 | 32.3 | 4.3 | 3.6 | 1.9 | 2.6 | 7.0 |
Au/ZnO | >99 | 43.1 | 4.0 | 2.3 | 2.8 | 3.9 | 10.0 |
Catalysts | Au (wt%) | W (wt%) | Zn (wt%) |
---|---|---|---|
W-ZnO | / | 4.4 | 57.0 |
Au/W-ZnO | 2.3 | 1.6 | 60.6 |
Au/W-ZnO-2 | 1.7 | 1.7 | 1.4 |
Au/W-ZnO-4 | 2.3 | 1.6 | 0.6 |
Au/ZnO | 2.0 | / | 56.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Zhou, C.; Cui, Y.; Jiang, W.; Han, G.; Jiang, Z.; Ben, H.; Yang, X. Sustainable Production of Lactic Acid from Cellulose Using Au/W-ZnO Catalysts. Polymers 2023, 15, 4235. https://doi.org/10.3390/polym15214235
Guo M, Zhou C, Cui Y, Jiang W, Han G, Jiang Z, Ben H, Yang X. Sustainable Production of Lactic Acid from Cellulose Using Au/W-ZnO Catalysts. Polymers. 2023; 15(21):4235. https://doi.org/10.3390/polym15214235
Chicago/Turabian StyleGuo, Mingyu, Chengfeng Zhou, Yuandong Cui, Wei Jiang, Guangting Han, Zhan Jiang, Haoxi Ben, and Xiaoli Yang. 2023. "Sustainable Production of Lactic Acid from Cellulose Using Au/W-ZnO Catalysts" Polymers 15, no. 21: 4235. https://doi.org/10.3390/polym15214235
APA StyleGuo, M., Zhou, C., Cui, Y., Jiang, W., Han, G., Jiang, Z., Ben, H., & Yang, X. (2023). Sustainable Production of Lactic Acid from Cellulose Using Au/W-ZnO Catalysts. Polymers, 15(21), 4235. https://doi.org/10.3390/polym15214235