Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Increase in the static shear strength of the C_NaOH, J_NaOH, and S_NaOH adhesive bonds in the range of 3–41% compared to the C, J, and S adhesive bonds;
- A positive effect of the addition of a filler based on oil plant microparticles, which modifies the fragile matrix;
- Statistically insignificant differences in the effect of alkali treatment on the shear strength of adhesive bonds with a composite adhesive layer at cyclic stress amplitudes of 5–30% and 5–50% (p > 0.05). A statistically insignificant difference was found in the effect of alkali treatment on strain, for S and J_NaOH adhesive bonds at a cyclic stress amplitude of 5–30%. Statistically significant differences (p < 0.05) were observed for all other types, including adhesive bonds loaded at an amplitude of 5–50%;
- A negative effect of cyclic loading at a higher amplitude of 5–50% on shear strength compared to 5–30%. At a cyclic loading amplitude of 5–50%, there was a slight reduction in strength, 0.2% for J adhesive bonds and 4% for J_NaOH adhesive bonds. There was a reduction of 0.6% for S adhesive bonds and a reduction of 3.5% for S_NaOH adhesive bonds;
- Noticeable differences in ∆Strain between adhesive bonds with modified and unmodified filler, especially at higher cyclic stress amplitudes of 5–50%. The adhesive bonds C, J, and S showed an average ∆Strain of 0.76%, and the adhesive bonds C_NaOH, J_NaOH and S_NaOH showed 0.64%. Therefore, it is evident that alkaline filler treatment led to a reduction in ∆Strain and therefore an increase in the lifetime of the adhesive bonds under cyclic loading. At an amplitude of 5–30%, no significant difference in ∆Strain between treated and untreated filler was demonstrated;
- Based on SEM analysis fillers based on the kernel without skin from the Jatropha Curcas L. designated (J, J_NaOH) and the whole kernel including skin (C, C_NaOH) have low interaction with the matrix (resin) due to the higher oil content. SEM analysis showed no difference in the interaction between the hybrid adhesive layer and the bonded material (adherend) for any variant of the experiment, differing by filler type. Delamination also occurred before the load cycle test. The SEM analysis showed the presence of interlayer defects in the fracture of the tested materials, which are related to the oilseed plant filler used.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banea, M.D.; Rosioara, M.; Carbas, R.J.C.; da Silva, L.F.M. Multi-Material Adhesive Joints for Automotive Industry. Compos. Part B Eng. 2018, 151, 71–77. [Google Scholar] [CrossRef]
- Da Silva, L.F.M.; Adams, R.D. Techniques to Reduce the Peel Stresses in Adhesive Joints with Composites. Int. J. Adhes. Adhes. 2007, 27, 227–235. [Google Scholar] [CrossRef]
- Duong, C.N. A General Approach to Fracture Analysis of Tapered Bonded Joints and Doublers. Eng. Fract. Mech. 2012, 96, 355–379. [Google Scholar] [CrossRef]
- Petrie, E.M. Handbook of Adhesives and Sealants, 2nd ed.; McGraw-Hill: New York, NY, USA, 2007; ISBN 9780071709811. [Google Scholar]
- Jeevi, G.; Nayak, S.K.; Abdul Kader, M. Review on Adhesive Joints and Their Application in Hybrid Composite Structures. J. Adhes. Sci. Technol. 2019, 33, 1497–1520. [Google Scholar] [CrossRef]
- Adams, R. Adhesive Bonding: Science, Technology and Applications; Woodhead Publishing: Cambridge, UK, 2005; ISBN 9781855737419. [Google Scholar]
- Pizzi, A.; Mittal, K. Handbook of Adhesive Technology; CRS Press Taylor & Francis Group: Boca Raton, FL, USA, 2003; ISBN 0824709861. [Google Scholar]
- Agyemang, N.S.; Antwi, K. Variations in Oil Content and Biodiesel Yield of Jatropha Curcas from Different Agro-Ecological Zones of Ghana. Int. J. Renew. Sustain. Energy 2014, 3, 76–81. [Google Scholar] [CrossRef]
- Ong, H.C.; Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Chong, W.T.; Boosroh, M.H. Production and Comparative Fuel Properties of Biodiesel from Non-Edible Oils: Jatropha Curcas, Sterculia Foetida and Ceiba Pentandra. Energy Convers. Manag. 2013, 73, 245–255. [Google Scholar] [CrossRef]
- Kabutey, A.; Herák, D.; Chotěborský, R.; Sigalingging, R.; Mizera, Č. Effect of Compression Speed on Energy Requirement and Oil Yield of Jatropha Curcas L. Bulk Seeds under Linear Compression. Biosyst. Eng. 2015, 136, 8–13. [Google Scholar] [CrossRef]
- Abdelgadir, H.A.; van Staden, J. Ethnobotany, Ethnopharmacology and Toxicity of Jatropha Curcas L. (Euphorbiaceae): A Review. S. Afr. J. Bot. 2013, 88, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Alherbawi, M.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Jatropha Curcas for Jet Biofuel Production: Current Status and Future Prospects. Renew. Sustain. Energy Rev. 2021, 135, 110396. [Google Scholar] [CrossRef]
- Deeba, F.; Kumar, V.; Gautam, K.; Saxena, R.K.; Sharma, D.K. Bioprocessing of Jatropha Curcas Seed Oil and Deoiled Seed Hulls for the Production of Biodiesel and Biogas. Biomass Bioenergy 2012, 40, 13–18. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Langyan, S.; Sangwan, S.; Rohtagi, B.; Khandelwal, A.; Shrivastava, M. Protein for Human Consumption From Oilseed Cakes: A Review. Front. Sustain. Food Syst. 2022, 6, 101. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.S.; Francis, G.; Becker, K. Phorbol Esters: Structure, Biological Activity, and Toxicity in Animals. Int. J. Toxicol. 2007, 26, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, V.; Martí-Herrero, J.; Romero, M.; Rivadeneira, D. Energy Use of Jatropha Oil Extraction Wastes: Pellets from Biochar and Jatropha Shell Blends. J. Clean. Prod. 2019, 215, 1095–1102. [Google Scholar] [CrossRef]
- Shivamurthy, B.; Murthy, K.; Joseph, P.C.; Rishi, K.; Bhat, K.U.; Anandhan, S. Mechanical Properties and Sliding Wear Behavior of Jatropha Seed Cake Waste/Epoxy Composites. J. Mater. Cycles Waste Manag. 2015, 17, 144–156. [Google Scholar] [CrossRef]
- Valášek, P. Mechanical Properties of Polymer Composites Based on Bioparticles (Jatropha Curcas L.). J. Teknol. 2015, 76, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hrabě, P.; Müller, M. Three-Body Abrasive Wear of Polymer Matrix Composites Filled with Jatropha Curcas L. Procedia Eng. 2016, 136, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Das, O.; Babu, K.; Shanmugam, V.; Sykam, K.; Tebyetekerwa, M.; Neisiany, R.E.; Försth, M.; Sas, G.; Gonzalez-Libreros, J.; Capezza, A.J.; et al. Natural and Industrial Wastes for Sustainable and Renewable Polymer Composites. Renew. Sustain. Energy Rev. 2022, 158, 112054. [Google Scholar] [CrossRef]
- Bourmaud, A.; Beaugrand, J.; Shah, D.U.; Placet, V.; Baley, C. Towards the Design of High-Performance Plant Fibre Composites. Prog. Mater. Sci. 2018, 97, 347–408. [Google Scholar] [CrossRef]
- Vijaya Ramnath, B.; Jeykrishnan, J.; Ramakrishnan, G.; Barath, B.; Ejoelavendhan, E.; Arun Raghav, P. Sea Shells and Natural Fibres Composites: A Review. Mater. Today Proc. 2018, 5, 1846–1851. [Google Scholar] [CrossRef]
- Iyer, K.A.; Torkelson, J.M. Green Composites of Polypropylene and Eggshell: Effective Biofiller Size Reduction and Dispersion by Single-Step Processing with Solid-State Shear Pulverization. Compos. Sci. Technol. 2014, 102, 152–160. [Google Scholar] [CrossRef]
- Sienkiewicz, N.; Dominic, M.; Parameswaranpillai, J. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers 2022, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- Umar, K.; Yaqoob, A.A.; Ibrahim, M.N.M.; Parveen, T.; Safian, M.T.U. Environmental Applications of Smart Polymer Composites. In Smart Polymer Nanocomposites: Biomedical and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–312. ISBN 9780128199619. [Google Scholar]
- Yan, L.; Kasal, B.; Huang, L. A Review of Recent Research on the Use of Cellulosic Fibres, Their Fibre Fabric Reinforced Cementitious, Geo-Polymer and Polymer Composites in Civil Engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Arumugaprabu, V.; Johnson, R.D.J.; Vigneshwaran, S. Mechanical Performance of Nanocomposites and Biomass-Based Composite Materials and Its Applications: An Overview. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer: Cham, Switzerland, 2020; pp. 1–14. ISBN 9783030111557. [Google Scholar]
- Herrera-Franco, P.; Valadez, A. A Study of the Mechanical Properties of Short Natural-Fiber Reinforced Composites. Compos. Part B Eng. 2005, 36, 597–608. [Google Scholar] [CrossRef]
- Alkbir, M.; Sapuan, M.S.; Nuraini, A.; Ishak, M. Fibre Properties and Crashworthiness Parameters of Natural Fibre-Reinforced Composite Structure: A Literature Review. Compos. Struct. 2016, 148, 59–73. [Google Scholar] [CrossRef]
- Aziz, S.; Ansell, M. The Effect of Alkalization and Fibre Alignment on the Mechanical and Thermal Properties of Kenaf and Hemp Bast Fibre Composites: Part 1—Polyester Resin Matrix. Compos. Sci. Technol. 2004, 64, 1219–1230. [Google Scholar] [CrossRef]
- Dalmay, P.; Smith, A.; Chotard, T.; Sahay-Turner, P.; Gloaguen, V.; Krausz, P. Properties of Cellulosic Fibre Reinforced Plaster: Influence of Hemp or Flax Fibres on the Properties of Set Gypsum. J. Mater. Sci. 2010, 45, 793–803. [Google Scholar] [CrossRef]
- Petrásek, S.; Müller, M. Mechanical Qualities of Adhesive Bonds Reinforced with Biological Fabric Treated by Plasma. Agron. Res. 2017, 15, 1170–1181. [Google Scholar]
- Valášek, P.; Müller, M.; Šleger, V.; Kolář, V.; Hromasová, M.; D’amato, R.; Ruggiero, A. Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials 2021, 14, 2636. [Google Scholar] [CrossRef]
- Valadez-Gonzalez, A.; Cervantes-Uc, J.M.; Olayo, R.; Herrera-Franco, P. Effect of Fiber Surface Treatment on the Fiber-Matrix Bond Strength of Natural Fiber Reinforced Composites. Compos. Part B Eng. 1999, 30, 309–320. [Google Scholar] [CrossRef]
- Müller, M.; Valášek, P.; Kolář, V.; Šleger, V.; Kagan Gürdil, G.A.; Hromasová, M.; Hloch, S.; Moravec, J.; Pexa, M. Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers 2019, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Nam, T.H.; Ogihara, S.; Tung, N.H.; Kobayashi, S. Effect of Alkali Treatment on Interfacial and Mechanical Properties of Coir Fiber Reinforced Poly(Butylene Succinate) Biodegradable Composites. Compos. Part B Eng. 2011, 42, 1648–1656. [Google Scholar] [CrossRef]
- Fan, T.; Hu, R.; Zhao, Z.; Liu, Y.; Lu, M. Surface Micro-Dissolve Method of Imparting Self-Cleaning Property to Cotton Fabrics in NaOH/Urea Aqueous Solution. Appl. Surf. Sci. 2017, 400, 524–529. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Safian, M.T.U.; Rashid, M.; Tabassum, P.; Umar, K.; Ibrahim, M.N.M. Introduction of Smart Polymer Nanocomposites. In Smart Polymer Nanocomposites: Biomedical and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–25. ISBN 9780128199619. [Google Scholar]
- Da Silva, L.F.M.; Öchsner, A.; Adams, R.D. Handbook of Adhesion Technology; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-319-55410-5. [Google Scholar]
- Awaja, F.; Zhang, S.; Tripathi, M.; Nikiforov, A.; Pugno, N. Cracks, Microcracks and Fracture in Polymer Structures: Formation, Detection, Autonomic Repair. Prog. Mater. Sci. 2016, 83, 536–573. [Google Scholar] [CrossRef]
- Chen, Y.; Smith, L.V. Ratcheting and Recovery of Adhesively Bonded Joints under Tensile Cyclic Loading. Mech. Time-Dependent Mater. 2021, 1–20. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Li, H.Y.; Wei, X.L. Uniaxial Ratchetting and Low-Cycle Fatigue Failure Behaviors of Adhesively Bonded Butt-Joints under Cyclic Tension Deformation. Int. J. Adhes. Adhes. 2019, 95, 102399. [Google Scholar] [CrossRef]
- Saraç, İ.; Adin, H.; Temiz, Ş. A Research on the Fatigue Strength of the Single-Lap Joint Joints Bonded with Nanoparticle-Reinforced Adhesive. Weld. World 2021, 65, 635–642. [Google Scholar] [CrossRef]
- Chu, C.W.; Zhang, Y.; Obayashi, K.; Kojio, K.; Takahara, A. Single-Lap Joints Bonded with Epoxy Nanocomposite Adhesives: Effect of Organoclay Reinforcement on Adhesion and Fatigue Behaviors. ACS Appl. Polym. Mater. 2021, 3, 3428–3437. [Google Scholar] [CrossRef]
- Kolář, V.; Müller, M.; Mishra, R.; Rudawska, A.; Šleger, V.; Tichý, M.; Hromasová, M.; Valášek, P. Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles. Polymers 2020, 12, 1391. [Google Scholar] [CrossRef]
- Hrabě, P.; Kolář, V.; Müller, M.; Hromasová, M. Service Life of Adhesive Bonds under Cyclic Loading with a Filler Based on Natural Waste from Coconut Oil Production. Polymers 2022, 14, 1033. [Google Scholar] [CrossRef]
- Müller, M.; Horníčková; Hrabě, P.; Mařík, J. Analysis of Physical, Mechanical and Chemical Properties of Seeds and Kernels of Jatropha Curcas. Res. Agric. Eng. 2015, 61, 99–105. [Google Scholar] [CrossRef]
- Niu, L.; Li, J.; Chen, M.S.; Xu, Z.F. Determination of Oil Contents in Sacha Inchi (Plukenetia Volubilis) Seeds at Different Developmental Stages by Two Methods: Soxhlet Extraction and Time-Domain Nuclear Magnetic Resonance. Ind. Crops Prod. 2014, 56, 187–190. [Google Scholar] [CrossRef]
- Mizera, Č.; Herák, D.; Hrabě, P.; Saller, T. Linear Pressing of Coconut Copra Meal (Cocos Nucifera L.) under Different Temperatures. Agron. Res. 2019, 17, 1132–1137. [Google Scholar] [CrossRef]
- International Organization for Standardization. ČSN EN 1465—Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies; Czech Standardization Institute: Prague, Czech Republic, 2009. [Google Scholar]
- Tichý, M.; Kolář, V.; Müller, M.; Mishra, R.K.; Šleger, V.; Hromasová, M. Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer. Polymers 2020, 12, 2945. [Google Scholar] [CrossRef] [PubMed]
- DIN 17120 Grade St 37-3—Low Carbon Steel—Matmatch. Available online: https://matmatch.com/materials/minfm31305-din-17120-grade-st-37-3 (accessed on 13 May 2021).
- Grant, L.D.R.; Adams, R.D.; da Silva, L.F.M. Experimental and Numerical Analysis of Single-Lap Joints for the Automotive Industry. Int. J. Adhes. Adhes. 2009, 29, 405–413. [Google Scholar] [CrossRef]
- Baskaran, P.G.; Kathiresan, M.; Pandiarajan, P. Effect of Alkali-Treatment on Structural, Thermal, Tensile Properties of Dichrostachys Cinerea Bark Fiber and Its Composites. J. Nat. Fibers 2022, 19, 433–449. [Google Scholar] [CrossRef]
- Orue, A.; Eceiza, A.; Arbelaiz, A. The Use of Alkali Treated Walnut Shells as Filler in Plasticized Poly(Lactic Acid) Matrix Composites. Ind. Crops Prod. 2020, 145, 111993. [Google Scholar] [CrossRef]
- Valášek, P.; Müller, M. Biocomposite Based on Epoxy Resin and Jatropha Curcas L. Microparticles. Adv. Mater. Res. 2014, 1030–1032, 446–449. [Google Scholar] [CrossRef]
- Broughton, W.R.; Mera, R.D.; Hinopoulos, G. Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment; National Physical Laboratory: Teddington, UK, 1999. [Google Scholar]
- Guo, Y.; Yang, C.; Wang, L.; Xu, F. Effects of Cyclic Loading on the Mechanical Properties of Mature Bedding Shale. Adv. Civ. Eng. 2018, 2018, 8985973. [Google Scholar] [CrossRef] [Green Version]
- Broughton, W.R.; Mera, R.D. Cyclic Fatigue Testing of Adhesive Joints Environmental Effects; National Physical Laboratory: Teddington, UK, 1999. [Google Scholar]
- Müller, M.; Šleger, V.; Kolář, V.; Hromasová, M.; Piš, D.; Mishra, R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers 2022, 14, 1301. [Google Scholar] [CrossRef]
- Anand Chairman, C.; Jayasathyakawin, S.; Srinivasan, D.; Ravichandran, M. Abrasive Wear Characteristics of Bio-Based Jatropha Oil Cake Incorporated Basalt Fiber Reinforced Epoxy Composites. Mater. Today Proc. 2020, 33, 3947–3950. [Google Scholar] [CrossRef]
- Ruggiero, A.; Valášek, P.; Müller, M.; D’Amato, R. Tribological Investigation of Epoxy/Seed Particle Composite Obtained from Residues of Processing Jatropha Curcas L. Fruits. Compos. Part B Eng. 2019, 167, 654–667. [Google Scholar] [CrossRef]
- Miturska, I.; Rudawska, A.; Müller, M.; Valášek, P. The Influence of Modification with Natural Fillers on the Mechanical Properties of Epoxy Adhesive Compositions after Storage Time. Materials 2020, 13, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudawska, A.; Abdel Wahab, M.; Müller, M. Effect of Ageing Process on Mechanical Properties of Adhesive Tubular Butt Joints in Aqueous Environment. Int. J. Adhes. Adhes. 2020, 96, 102466. [Google Scholar] [CrossRef]
- Hasanah, U.; Setiaji, B.; Triyono, T.; Anwar, C. The Chemical Composition and Physical Properties of the Light and Heavy Tar Resulted from Coconut Shell Pyrolysis. J. Pure Appl. Chem. Res. 2012, 1, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yang, Y.; Qin, Z.; Sun, Y. Factors Affecting the Yield of Bio-Oil from the Pyrolysis of Coconut Shell. Springerplus 2016, 5, 333. [Google Scholar] [CrossRef]
Marking | Characteristics |
---|---|
C | Whole kernel including skin; without alkali treatment |
S | Skin; without alkaline treatment |
J | Kernels without skin; without alkaline treatment |
C_NaOH | Whole kernel including skin; alkaline treatment in 5% NaOH |
S_NaOH | Skin; alkaline treatment in 5% NaOH |
J_NaOH | Kernels without skin; alkaline treatment in 5% NaOH |
AB0 | Pure adhesive; no filler |
Tensile Strength | 340–470 MPa |
Yield Strength | 225–235 MPa |
Elastic Modulus | 212 GPa |
Elongation | 24% |
Adhesive Bond | Fmax of C, S, J (N) | Amplitude 5–30% of Fmax of C, S, J (N) | Amplitude 5–50% of Fmax C, S, J (N) |
---|---|---|---|
C; C_NaOH | 2810 | 140–843 | 140–1405 |
J; J_NaOH | 4246 | 212–1274 | 212–2123 |
S, S_NaOH | 3726 | 186–1118 | 186–1863 |
p-Parameter | ||||||
---|---|---|---|---|---|---|
Tensile Strength | Strain | |||||
C; C_NaOH | J; J_NaOH | S; S_NaOH | C; C_NaOH | J; J_NaOH | S; S_NaOH | |
0.01 | 0.18 | 0.14 | 0.01 | 0.01 | 0.25 | |
AB0 | 0.01; 0.01 | 0.01; 0.01 | 0.01; 0.01 | 0.01; 0.01 | 0.01; 0.01 | 0.01; 0.01 |
Amplitude | Adhesive Bond Type | ∆Strain (1st–1000th Cycle) | Finished Tests |
---|---|---|---|
[%] | [-] | ||
5–30% | C | 0.16 | 7/7 |
J | 0.09 | 7/7 | |
S | 0.08 | 7/7 | |
C_NaOH | 0.08 | 7/7 | |
J_NaOH | 0.08 | 7/7 | |
S_NaOH | 0.08 | 7/7 | |
5–50% | C | 0.79 | 7/7 |
J | 0.75 | 7/7 | |
S | 0.76 | 7/7 | |
C_NaOH | 0.67 | 7/7 | |
J_NaOH | 0.63 | 7/7 | |
S_NaOH | 0.62 | 7/7 |
Type of Adhesive Bond | Characteristics of the Adhesive Bond Test | AF 1 | A/CF 2 |
---|---|---|---|
C | Static test | 2 | 5 |
Amplitude 5–30% | 6 | 1 | |
Amplitude 5–50% | 4 | 3 | |
J | Static test | 0 | 7 |
Amplitude 5–30% | 5 | 2 | |
Amplitude 5–50% | 2 | 5 | |
S | Static test | 0 | 7 |
Amplitude 5–30% | 7 | 0 | |
Amplitude 5–50% | 4 | 3 | |
C_NaOH | Static test | 1 | 6 |
Amplitude 5–30% | 2 | 5 | |
Amplitude 5–50% | 1 | 6 | |
J_NaOH | Static test | 0 | 7 |
Amplitude 5–30% | 0 | 7 | |
Amplitude 5–50% | 2 | 5 | |
S_NaOH | Static test | 0 | 7 |
Amplitude 5–30% | 3 | 4 | |
Amplitude 5–50% | 1 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolář, V.; Hrabě, P.; Müller, M.; Hromasová, M.; Herák, D.; Sutanto, H. Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading. Polymers 2023, 15, 395. https://doi.org/10.3390/polym15020395
Kolář V, Hrabě P, Müller M, Hromasová M, Herák D, Sutanto H. Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading. Polymers. 2023; 15(2):395. https://doi.org/10.3390/polym15020395
Chicago/Turabian StyleKolář, Viktor, Petr Hrabě, Miroslav Müller, Monika Hromasová, David Herák, and Hadi Sutanto. 2023. "Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading" Polymers 15, no. 2: 395. https://doi.org/10.3390/polym15020395
APA StyleKolář, V., Hrabě, P., Müller, M., Hromasová, M., Herák, D., & Sutanto, H. (2023). Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading. Polymers, 15(2), 395. https://doi.org/10.3390/polym15020395