Special Aspects of Nitrocellulose Molar Mass Determination by Dynamic Light Scattering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saunders, C.W.; Taylor, L.T. A Review of the Synthesis, Chemistry and Analysis of Nitrocellulose. J. Energ. Mater. 1990, 8, 149–203. [Google Scholar] [CrossRef]
- Tkacheva, N.I.; Morozov, S.V.; Grigor’ev, I.A.; Mognonov, D.M.; Kolchanov, N.A. Modification of Cellulose as a Promising Direction in the Design of New Materials. Polym. Sci. Ser. B 2013, 55, 409–429. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Phillips, G.; Wedlock, D.; Williams, P.A. Cellulose and Its Derivatives: Chemistry, Biochemistry a. Applications; Wiley: New York, NY, USA, 1985; Volume 551. [Google Scholar]
- Kostochko, A.V.; Valishina, Z.T.; Shipina, O.T. Features of the Structure and Rheology of Nitrocellulose Solutions. Int. Polym. Sci. Technol. 2013, 40, 27–32. [Google Scholar] [CrossRef]
- Fernández de la Ossa, M.Á.; López-López, M.; Torre, M.; García-Ruiz, C. Analytical Techniques in the Study of Highly-Nitrated Nitrocellulose. TrAC Trends Anal. Chem. 2011, 30, 1740–1755. [Google Scholar] [CrossRef]
- Golubev, A.E.; Kuvshinova, S.A.; Burmistrov, V.A.; Koifman, O.I. Modern Advances in the Preparation and Modification of Cellulose Nitrates. Russ. J. Gen. Chem. 2018, 88, 368–381. [Google Scholar] [CrossRef]
- Mizuguchi, J. Dependence of the Diffusion Current on the Degree of Polymerization of Nitrocellulose in Acetone-Isopropyl Alcohol. J. Electrochem. Soc. 1982, 129, 1520–1523. [Google Scholar] [CrossRef]
- Sovizi, M.R.; Hajimirsadeghi, S.S.; Naderizadeh, B. Effect of Particle Size on Thermal Decomposition of Nitrocellulose. J. Hazard. Mater. 2009, 168, 1134–1139. [Google Scholar] [CrossRef]
- McKeen, L. The Effect of Sterilization on Plastics and Elastomers; Elsevier: Boston, MA, USA, 2012; ISBN 9781455728053. [Google Scholar]
- Shokri, J.; Adibki, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In Cellulose-Medical, Pharmaceutical and Electronic Applications; InTech: London, UK, 2013. [Google Scholar]
- Chen, P.; Gates-Hollingsworth, M.; Pandit, S.; Park, A.; Montgomery, D.; AuCoin, D.; Gu, J.; Zenhausern, F. Paper-Based Vertical Flow Immunoassay (VFI) for Detection of Bio-Threat Pathogens. Talanta 2019, 191, 81–88. [Google Scholar] [CrossRef]
- Chi, J.; Ma, B.; Dong, X.; Gao, B.; Elbaz, A.; Liu, H.; Gu, Z. A Bio-Inspired Photonic Nitrocellulose Array for Ultrasensitive Assays of Single Nucleic Acids. Analyst 2018, 143, 4559–4565. [Google Scholar] [CrossRef]
- Luo, Y.; Nartker, S.; Wiederoder, M.; Miller, H.; Hochhalter, D.; Drzal, L.T.; Alocilja, E.C. Novel Biosensor Based on Electrospun Nanofiber and Magnetic Nanoparticles for the Detection of E. Coli O157:H7. IEEE Trans. Nanotechnol. 2012, 11, 676–681. [Google Scholar] [CrossRef]
- Santamaría, B.; Laguna, M.; López-Romero, D.; Hernandez, A.; Sanza, F.; Lavín, Á.; Casquel, R.; Maigler, M.; Espinosa, R.; Holgado, M. Development towards Compact Nitrocellulose-Based Interferometric Biochips for Dry Eye MMP9 Label-Free In-Situ Diagnosis. Sensors 2017, 17, 1158. [Google Scholar] [CrossRef]
- Nartker, S.; Hassan, M.; Stogsdill, M. Electrospun Cellulose Nitrate and Polycaprolactone Blended Nanofibers. Mater. Res. Express 2015, 2, 035401. [Google Scholar] [CrossRef]
- Yew, C.-H.T.; Azari, P.; Choi, J.R.; Li, F.; Pingguan-Murphy, B. Electrospin-Coating of Nitrocellulose Membrane Enhances Sensitivity in Nucleic Acid-Based Lateral Flow Assay. Anal. Chim. Acta 2018, 1009, 81–88. [Google Scholar] [CrossRef]
- Mansfield, M.A. Nitrocellulose Membranes for Lateral Flow Immunoassays: A Technical Treatise. In Lateral Flow Immunoassay; Humana Press: Totowa, NJ, USA, 2009; pp. 1–19. [Google Scholar]
- Sun, S.; Feng, S.; Ji, C.; Shi, M.; He, X.; Xu, F.; Lu, T.J. Microstructural Effects on Permeability of Nitrocellulose Membranes for Biomedical Applications. J. Memb. Sci. 2020, 595, 117502. [Google Scholar] [CrossRef]
- Elmaghraby, N.A.; Omer, A.M.; Kenawy, E.-R.; Gaber, M.; El Nemr, A. Fabrication of Cellulose Acetate/Cellulose Nitrate/Carbon Black Nanofiber Composite for Oil Spill Treatment. Biomass Convers. Biorefinery 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Li, A.; Wang, Y.; Deng, L.; Zhao, X.; Yan, Q.; Cai, Y.; Lin, J.; Bai, Y.; Liu, S.; Zhang, Y. Use of Nitrocellulose Membranes as a Scaffold in Cell Culture. Cytotechnology 2013, 65, 71–81. [Google Scholar] [CrossRef]
- Mischnick, P.; Momcilovic, D. Chemical Structure Analysis of Starch and Cellulose Derivatives. Adv. Carbohydr. Chem. Biochem. 2010, 64, 117–210. [Google Scholar] [CrossRef]
- Moore, W.R. Thermodynamic Properties of Dilute Solutions of Cellulose Derivatives. Text. Res. J. 1960, 30, 965–976. [Google Scholar] [CrossRef]
- Gensh, K.V.; Kolosov, P.V.; Bazarnova, N.G. Quantitative Analysis of Cellulose Nitrates by Fourier Transform Infrared Spectroscopy. Russ. J. Bioorganic Chem. 2011, 37, 814–816. [Google Scholar] [CrossRef]
- Kovalenko, V.I. Inhomogeneity in the Molecular Structure of Cellulose Nitrates. Russ. Chem. Rev. 1995, 64, 753–766. [Google Scholar] [CrossRef]
- Sakovich, G.V.; Mikhailov, Y.M.; Budaeva, V.V.; Korchagina, A.A.; Gismatulina, Y.A.; Kozyrev, N.V. Cellulose Nitrates from Unconventional Feedstocks. Dokl. Chem. 2018, 483, 287–291. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Gladysheva, E.K.; Budaeva, V.V.; Sakovich, G.V. Synthesis of Bacterial Cellulose Nitrates. Russ. Chem. Bull. 2019, 68, 2130–2133. [Google Scholar] [CrossRef]
- Curran, K.; Možir, A.; Underhill, M.; Gibson, L.T.; Fearn, T.; Strlič, M. Cross-Infection Effect of Polymers of Historic and Heritage Significance on the Degradation of a Cellulose Reference Test Material. Polym. Degrad. Stab. 2014, 107, 294–306. [Google Scholar] [CrossRef]
- Mishta, P.V.; Vershinina, I.P.; Shchukina, A.G.; Ryabchuk, G.V. Experimental Study of the Flow of Solutions of Cellulose Nitrate in a Tube Rotating about Its Own Axis. Chem. Pet. Eng. 2012, 48, 499–502. [Google Scholar] [CrossRef]
- Louvet, A.; Lavedrine, B.; Flieder, F. Size Exclusion Chromatography and Mass Spectrometry of Photographic Bases in Cellulose Nitrate Degradation. J. Photogr. Sci. 1995, 43, 30–35. [Google Scholar] [CrossRef]
- Soubelet, O.; Presta, M.A.; Marx-Figini, M. SEC on Cellulose Nitrate: DP-Ve Relationship and Evaluation of Different Methods to Determine the Calibration Parameters. Die Angew. Makromol. Chem. 1990, 175, 117–128. [Google Scholar] [CrossRef]
- Mazurek, J.; Laganà, A.; Dion, V.; Etyemez, S.; Carta, C.; Schilling, M.R. Investigation of Cellulose Nitrate and Cellulose Acetate Plastics in Museum Collections Using Ion Chromatography and Size Exclusion Chromatography. J. Cult. Herit. 2019, 35, 263–270. [Google Scholar] [CrossRef]
- Schelosky, N.; Roder, T.; Baldinger, T. Molecular Mass Distribution of Cellulosic Products by Size Exclusion Chromatography in DMAc/LiCl. Papier 1999, 53, 728–738. [Google Scholar]
- Henniges, U.; Vejdovszky, P.; Siller, M.; Jeong, M.-J.; Rosenau, T.; Potthast, A. Finally Dissolved! Activation Procedures to Dissolve Cellulose in DMAc/LiCl Prior to Size Exclusion Chromatography Analysis–A Review. Curr. Chromatogr. 2014, 1, 52–68. [Google Scholar] [CrossRef]
- Brooks, M.C.; Badger, R.M. Partition Systems for the Fractionation of Nitrocellulose with Respect to Molecular Weight 1,2. J. Am. Chem. Soc. 1950, 72, 1705–1709. [Google Scholar] [CrossRef]
- Liu, J. Nitrocellulose. In Nitrate Esters Chemistry and Technology; Springer Singapore: Singapore, 2019; pp. 469–580. [Google Scholar]
- Büchner, E.H.; Samwel, P.J.P. The Molecular Weight of Acetocellulose and Nitrocellulose. Trans. Faraday Soc. 1933, 29, 32–40. [Google Scholar] [CrossRef]
- Spurlin, H.M. Homogeneity and Properties of Nitrocellulose. Ind. Eng. Chem. 1938, 30, 538–542. [Google Scholar] [CrossRef]
- Mitchell, R.L. Precipitation Fractionation of Cellulose Nitrate. Ind. Eng. Chem. 1953, 45, 2526–2531. [Google Scholar] [CrossRef]
- Lindsley, C.H.; Frank, M.B. Intrinsic Viscosity of Nitrocellulose. Ind. Eng. Chem. 1953, 45, 2491–2497. [Google Scholar] [CrossRef]
- Oberlerchner, J.; Rosenau, T.; Potthast, A. Overview of Methods for the Direct Molar Mass Determination of Cellulose. Molecules 2015, 20, 10313–10341. [Google Scholar] [CrossRef]
- Siochi, E.J.; Ward, T.C. Absolute Molecular Weight Distribution of Nitrocellulose. J. Macromol. Sci. Part C Polym. Rev. 1989, 29, 561–657. [Google Scholar] [CrossRef]
- Sedlák, M. Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: I. Light Scattering Characterization. J. Phys. Chem. B 2006, 110, 4329–4338. [Google Scholar] [CrossRef]
- Ewart, R.H.; Roe, C.P.; Debye, P.; McCartney, J.R. The Determination of Polymeric Molecular Weights by Light Scattering in Solvent-Precipitant Systems. J. Chem. Phys. 1946, 14, 687–695. [Google Scholar] [CrossRef]
- Vshivkov, S.A.; Safronov, A.P.; Rusinova, E.V.; Adamova, L.V.; Lvovich, A.N.; Stepanovna, T.I.; Vyacheslavovna, T.T.; Gennadyevich, G.A. Methods of Investigation of Polymer Systems; Ural University Publishing House: Ekaterinburg, Russia, 2016. [Google Scholar]
- Blaker, R.H.; Badger, R.M. A Study of the Interaction of Nitrocellulose with Some Solvents and Non-Solvents by the Light-Scattering Method 1. J. Am. Chem. Soc. 1950, 72, 3129–3132. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, J.; Ding, Y.; Xiao, Z. Fabrication and Mechanism Study of the Nitrocellulose Aqueous Dispersions by Solvent Displacement Method. J. Appl. Polym. Sci. 2023, 140, e53290. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, P.; Scheffold, F. Advances in Dynamic Light Scattering Techniques. In Light Scattering Reviews 4; Springer: Berlin/Heidelberg, Germany, 2009; pp. 433–467. [Google Scholar]
- Murphy, R.M. Static and Dynamic Light Scattering of Biological Macromolecules: What Can We Learn? Curr. Opin. Biotechnol. 1997, 8, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Goldburg, W.I. Dynamic Light Scattering. Am. J. Phys. 1999, 67, 1152–1160. [Google Scholar] [CrossRef]
- Huque, M.M.; Goring, D.A.I.; Mason, S.G. Molecular Size and Configuration of Cellulose Trinitrate in Solution. Can. J. Chem. 1958, 36, 952–969. [Google Scholar] [CrossRef]
- Litmanovich, E.A.; Ivleva, E.M. The Problem of Bimodal Distributions in Dynamic Light Scattering: Theory and Experiment. Polym. Sci. Ser. A 2010, 52, 671–678. [Google Scholar] [CrossRef]
- Fengl, R. Cellulose Esters, Inorganic Esters. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 394–408. [Google Scholar]
- Imashevna, S.R. Chemistry of Nitrate Ethers of Cellulose; Frunze: Ilim, Kyrgyzstan, 1985. [Google Scholar]
- Pozharsky, A.F.; Anisimova, V.A.; Tsupak, E.B. Practical Work on the Chemistry of Heterocycles; Forest Industry: Moscow, Russia, 1988. [Google Scholar]
- Nikitin, V.M.; Obolenskaya, A.V.; Shchegolev, V.P. Chemicals Woods and Cellulose; Forest Industry: Moscow, Russia, 1978. [Google Scholar]
- Itakura, M.; Shimada, K.; Matsuyama, S.; Saito, T.; Kinugasa, S. A Convenient Method to Determine the Rayleigh Ratio with Uniform Polystyrene Oligomers. J. Appl. Polym. Sci. 2006, 99, 1953–1959. [Google Scholar] [CrossRef]
- Itakura, M.; Sato, K.; Lusenkova, M.A.; Matsuyama, S.; Shimada, K.; Saito, T.; Kinugasa, S. Molecular Weight Dependency of Refractive Index Increment of Polystyrene Determined by Uniform Oligomers. J. Appl. Polym. Sci. 2004, 94, 1101–1106. [Google Scholar] [CrossRef]
- Tanford, C. Physical Chemistry of Macromolecules; John Wiley & Sons, Inc.: New York, NY, USA, 1961; ISBN 0-471-84447-0. [Google Scholar]
- Debye, P. Light Scattering in Solutions. J. Appl. Phys. 1944, 15, 338–342. [Google Scholar] [CrossRef]
- Zimm, B.H. Molecular Theory of the Scattering of Light in Fluids. J. Chem. Phys. 1945, 13, 141–145. [Google Scholar] [CrossRef]
- Saldívar-Guerra, E.; Vivaldo-Lima, E. (Eds.) Handbook of Polymer Synthesis, Characterization, and Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 9781118480793. [Google Scholar]
- Kolmakov, K.M.; Kozlov, G.V.; Rozen, A.E.; Roshchin, A.V.; Bloshenko, A.V. Chemical Recycling of Cellulose Nitrate Waste. Russ. J. Phys. Chem. B 2017, 11, 691–696. [Google Scholar] [CrossRef]
C, g/100 mL | I(X), % | D, nm | P(θ) | R(θ) | K | C·P(θ) | K·C·P(θ)·R(θ)−1 × 104 |
---|---|---|---|---|---|---|---|
0.0100 | 2.879 | 1425 | 2.104 | 85.26 | 2.135 | 0.02104 | 5.27 ± 0.45 |
0.00900 | 2.920 | 1267 | 1.873 | 86.48 | 2.135 | 0.01686 | 4.16 ± 0.42 |
0.00800 | 2.760 | 1090 | 1.646 | 81.74 | 2.135 | 0.01317 | 3.44 ± 0.45 |
0.00700 | 2.847 | 1573 | 2.345 | 84.31 | 2.135 | 0.01642 | 4.16 ± 0.37 |
0.00600 | 2.628 | 2036 | 3.254 | 77.84 | 2.135 | 0.01952 | 5.35 ± 0.43 |
0.00500 | 2.781 | 1174 | 1.749 | 82.36 | 2.135 | 0.008745 | 2.27 ± 0.33 |
0.00400 | 3.958 | 1473 | 2.179 | 117.2 | 2.135 | 0.008717 | 1.98 ± 0.37 |
Fraction | Nitrogen Content in CellNO3, % by Weight | Specific Viscosity [η]sp | Coefficient Rω(N)13.6 | Corrected Intrinsic Viscosity [η]13.6 | Degree of Polymerization Pη |
---|---|---|---|---|---|
1 | 8.39 ± 0.46 | 0.5191 | 5.090 | 2.643 | 264 |
2 | 9.60 ± 0.55 | 0.3936 | 3.513 | 1.383 | 138 |
3 | 9.68 ± 0.58 | 0.3462 | 3.426 | 1.186 | 119 |
4 | 9.27 ± 0.44 | 0.1903 | 3.881 | 0.7384 | 73.8 |
5 | 9.66 ± 0.40 | 0.1796 | 3.448 | 0.6195 | 61.9 |
6 | 9.87 ± 0.47 | 0.09024 | 3.227 | 0.2912 | 29.1 |
Molecular Formula of Nitrocellulose | Molar Mass of CellNO3, Da | Nitrogen Content in CellNO3, % by Weight | Mass Average Molar Mass of CellNO3 Monomer Unit, Da |
---|---|---|---|
C24H28O8(NO3)12 | 1188.5 | 14.14 | 297.1 |
C24H29O9(NO3)11 | 1143.5 | 13.47 | 285.9 |
C24H30O10(NO3)10 | 1098.5 | 12.75 | 274.6 |
C24H31O11(NO3)9 | 1053.5 | 11.97 | 263.4 |
C24H32O12(NO3)8 | 1008.5 | 11.11 | 252.1 |
C24H33O13(NO3)7 | 963.5 | 10.18 | 240.9 |
C24H34O14(NO3)6 | 918.5 | 9.15 | 229.6 |
C24H35O15(NO3)5 | 873.5 | 8.02 | 218.4 |
C24H36O16(NO3)4 | 828.6 | 6.76 | 207.1 |
C24H37O17(NO3)3 | 783.6 | 5.36 | 195.9 |
C24H38O18(NO3)2 | 738.6 | 3.79 | 184.6 |
Fraction | Nitrogen Content in CellNO3, % by Weight | Viscosity-Average Degree of Polymerization Pη | Mass Average Molar Mass of a CellNO3 Molecular Unit, Da | Viscosity-Average Molar Mass Mη, kDa | Mass Average Molar Mass Determined by the Dynamic Light Scattering Method, MW, kDa |
---|---|---|---|---|---|
1 | 8.39 ± 0.46 | 264 | 222.0 | 58.7 ± 11.3 | 64.5 ± 17.0 |
2 | 9.60 ± 0.55 | 138 | 234.4 | 32.4 ± 6.1 | 37.0 ± 8.6 |
3 | 9.68 ± 0.58 | 119 | 235.3 | 27.9 ± 4.7 | 29.4 ± 9.9 |
4 | 9.27 ± 0.44 | 73.8 | 230.9 | 17.1 ± 1.8 | 22.2 ± 5.6 |
5 | 9.66 ± 0.40 | 61.9 | 235.1 | 14.6 ± 2.2 | 18.8 ± 6.3 |
6 | 9.87 ± 0.47 | 29.1 | 237.4 | 6.92 ± 1.10 | 7.98 ± 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solovov, R.; Kazberova, A.; Ershov, B. Special Aspects of Nitrocellulose Molar Mass Determination by Dynamic Light Scattering. Polymers 2023, 15, 263. https://doi.org/10.3390/polym15020263
Solovov R, Kazberova A, Ershov B. Special Aspects of Nitrocellulose Molar Mass Determination by Dynamic Light Scattering. Polymers. 2023; 15(2):263. https://doi.org/10.3390/polym15020263
Chicago/Turabian StyleSolovov, Roman, Anfisa Kazberova, and Boris Ershov. 2023. "Special Aspects of Nitrocellulose Molar Mass Determination by Dynamic Light Scattering" Polymers 15, no. 2: 263. https://doi.org/10.3390/polym15020263
APA StyleSolovov, R., Kazberova, A., & Ershov, B. (2023). Special Aspects of Nitrocellulose Molar Mass Determination by Dynamic Light Scattering. Polymers, 15(2), 263. https://doi.org/10.3390/polym15020263