Aerogel-Like Material Based on PEGylated Hyperbranched Polymethylethoxysiloxane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
Synthesis and Properties of PMEOS-PEG
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John, F.T.; Conroy, B.H. Microscale Thermal Relaxation during Acoustic Propagation in Aerogel and Other Porous Media. Microscale Thermophys. Eng. 1999, 3, 199–215. [Google Scholar] [CrossRef]
- Forest, L.; Gibiat, V.; Woignier, T. Biot’s Theory of Acoustic Propagation in Porous Media Applied to Aerogels and Alcogels. J. Non. Cryst. Solids 1998, 225, 287–292. [Google Scholar] [CrossRef]
- Smith, D.M.; Maskara, A.; Boes, U. Aerogel-Based Thermal Insulation. J. Non. Cryst. Solids 1998, 225, 254–259. [Google Scholar] [CrossRef]
- Wiener, M.; Reichenauer, G.; Braxmeier, S.; Hemberger, F.; Ebert, H.-P. Carbon Aerogel-Based High-Temperature Thermal Insulation. Int. J. Thermophys. 2009, 30, 1372–1385. [Google Scholar] [CrossRef]
- Buzykaev, A.R.; Danilyuk, A.F.; Ganzhur, S.F.; Kravchenko, E.A.; Onuchin, A.P. Measurement of Optical Parameters of Aerogel. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 433, 396–400. [Google Scholar] [CrossRef]
- Jensen, K.I.; Schultz, J.M.; Kristiansen, F.H. Development of Windows Based on Highly Insulating Aerogel Glazings. J. Non. Cryst. Solids 2004, 350, 351–357. [Google Scholar] [CrossRef]
- Dhua, S.; Gupta, A.K.; Mishra, P. Aerogel: Functional Emerging Material for Potential Application in Food: A Review. Food Bioprocess Technol. 2022, 15, 2396–2421. [Google Scholar] [CrossRef]
- Lv, P.; Tan, X.-W.; Yu, K.-H.; Zheng, R.-L.; Zheng, J.-J.; Wei, W. Super-Elastic Graphene/Carbon Nanotube Aerogel: A Novel Thermal Interface Material with Highly Thermal Transport Properties. Carbon N. Y. 2016, 99, 222–228. [Google Scholar] [CrossRef]
- Bryning, M.B.; Milkie, D.E.; Islam, M.F.; Hough, L.A.; Kikkawa, J.M.; Yodh, A.G. Carbon Nanotube Aerogels. Adv. Mater. 2007, 19, 661–664. [Google Scholar] [CrossRef]
- De Marco, M.; Markoulidis, F.; Menzel, R.; Bawaked, S.M.; Mokhtar, M.; Al-Thabaiti, S.A.; Basahel, S.N.; Shaffer, M.S.P. Cross-Linked Single-Walled Carbon Nanotube Aerogel Electrodes via Reductive Coupling Chemistry. J. Mater. Chem. A 2016, 4, 5385–5389. [Google Scholar] [CrossRef]
- Hees, T.; Zhong, F.; Rudolph, T.; Walther, A.; Mülhaupt, R. Nanocellulose Aerogels for Supporting Iron Catalysts and In Situ Formation of Polyethylene Nanocomposites. Adv. Funct. Mater. 2017, 27, 1605586. [Google Scholar] [CrossRef]
- Li, J.; Zuo, K.; Wu, W.; Xu, Z.; Yi, Y.; Jing, Y.; Dai, H.; Fang, G. Shape Memory Aerogels from Nanocellulose and Polyethyleneimine as a Novel Adsorbent for Removal of Cu(II) and Pb(II). Carbohydr. Polym. 2018, 196, 376–384. [Google Scholar] [CrossRef]
- Deuber, F.; Mousavi, S.; Federer, L.; Hofer, M.; Adlhart, C. Exploration of Ultralight Nanofiber Aerogels as Particle Filters: Capacity and Efficiency. ACS Appl. Mater. Interfaces 2018, 10, 9069–9076. [Google Scholar] [CrossRef] [PubMed]
- Selmer, I.; Kleemann, C.; Kulozik, U.; Heinrich, S.; Smirnova, I. Development of Egg White Protein Aerogels as New Matrix Material for Microencapsulation in Food. J. Supercrit. Fluids 2015, 106, 42–49. [Google Scholar] [CrossRef]
- Falahati, M.T.; Ghoreishi, S.M. Preparation of Balangu (Lallemantia Royleana) Seed Mucilage Aerogels Loaded with Paracetamol: Evaluation of Drug Loading via Response Surface Methodology. J. Supercrit. Fluids 2019, 150, 1–10. [Google Scholar] [CrossRef]
- Comin, L.M.; Temelli, F.; Saldaña, M.D.A. Barley Beta-Glucan Aerogels via Supercritical CO2 Drying. Food Res. Int. 2012, 48, 442–448. [Google Scholar] [CrossRef]
- Comin, L.M.; Temelli, F.; Saldaña, M.D.A. Flax Mucilage and Barley Beta-Glucan Aerogels Obtained Using Supercritical Carbon Dioxide: Application as Flax Lignan Carriers. Innov. Food Sci. Emerg. Technol. 2015, 28, 40–46. [Google Scholar] [CrossRef]
- Kistler, S.S. Coherent Expanded Aerogels and Jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Yokogawa, H.; Yokoyama, M. Hydrophobic Silica Aerogels. J. Non. Cryst. Solids 1995, 186, 23–29. [Google Scholar] [CrossRef]
- Di Luigi, M.; Guo, Z.; An, L.; Armstrong, J.N.; Zhou, C.; Ren, S. Manufacturing Silica Aerogel and Cryogel through Ambient Pressure and Freeze Drying. RSC Adv. 2022, 12, 21213–21222. [Google Scholar] [CrossRef]
- He, X.; Tang, B.; Cheng, X.; Zhang, Y.; Huang, L. Preparation of the Methyltriethoxysilane Based Aerogel Monolith with an Ultra-Low Density and Excellent Mechanical Properties by Ambient Pressure Drying. J. Colloid Interface Sci. 2021, 600, 764–774. [Google Scholar] [CrossRef]
- Wang, L.; Feng, J.; Jiang, Y.; Li, L.; Feng, J. Elastic Methyltrimethoxysilane Based Silica Aerogels Reinforced with Polyvinylmethyldimethoxysilane. RSC Adv. 2019, 9, 10948–10957. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Bhagat, S.D.; Hirashima, H.; Pajonk, G.M. Synthesis of Flexible Silica Aerogels Using Methyltrimethoxysilane (MTMS) Precursor. J. Colloid Interface Sci. 2006, 300, 279–285. [Google Scholar] [CrossRef]
- Kanamori, K.; Aizawa, M.; Nakanishi, K.; Hanada, T. New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties. Adv. Mater. 2007, 19, 1589–1593. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, N.; Apostolopoulou-Kalkavoura, V.; Qin, B.; Ma, Z.; Xing, W.; Qiao, C.; Bergström, L.; Antonietti, M.; Yu, S. Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels. Angew. Chem. Int. Ed. 2018, 57, 4538–4542. [Google Scholar] [CrossRef]
- Kholodkov, D.N.; Arzumanyan, A.V.; Novikov, R.A.; Kashin, A.S.; Polezhaev, A.V.; Vasil’ev, V.G.; Muzafarov, A.M. Silica-Based Aerogels with Tunable Properties: The Highly Efficient BF 3 -Catalyzed Preparation and Look inside Their Structure. Macromolecules 2021, 54, 1961–1975. [Google Scholar] [CrossRef]
- Zhou, B.; Shen, J.; Wu, Y.; Wu, G.; Ni, X. Hydrophobic Silica Aerogels Derived from Polyethoxydisiloxane and Perfluoroalkylsilane. Mater. Sci. Eng. C 2007, 27, 1291–1294. [Google Scholar] [CrossRef]
- Smith, D.M.; Scherer, G.W.; Anderson, J.M. Shrinkage during Drying of Silica Gel. J. Non. Cryst. Solids 1995, 188, 191–206. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Oh, C.-S.; Kim, Y.-H.; Ahn, Y.-S.; Yeo, J.-G. Methyltrimethoxysilane Based Monolithic Silica Aerogels via Ambient Pressure Drying. Microporous Mesoporous Mater. 2007, 100, 350–355. [Google Scholar] [CrossRef]
- Júlio, M. de F.; Ilharco, L.M. Hydrophobic Granular Silica-Based Aerogels Obtained from Ambient Pressure Monoliths. Materialia 2020, 9, 100527. [Google Scholar] [CrossRef]
- Garrido, R.; Silvestre, J.D.; Flores-Colen, I.; de Júlio, M.F.; Pedroso, M. Economic Assessment of the Production of Subcritically Dried Silica-Based Aerogels. J. Non. Cryst. Solids 2019, 516, 26–34. [Google Scholar] [CrossRef]
- Zhou, T.; Cheng, X.; Pan, Y.; Li, C.; Gong, L.; Zhang, H. Mechanical Performance and Thermal Stability of Glass Fiber Reinforced Silica Aerogel Composites Based on Co-Precursor Method by Freeze Drying. Appl. Surf. Sci. 2018, 437, 321–328. [Google Scholar] [CrossRef]
- Zhai, S.; Yu, K.; Meng, C.; Wang, H.; Fu, J. Eco-Friendly Approach for Preparation of Hybrid Silica Aerogel via Freeze Drying Method. J. Mater. Sci. 2022, 57, 7491–7502. [Google Scholar] [CrossRef]
- Güler, Ö.; Selen, V.; Başgöz, Ö.; Safa, H.; Yahia, I.S. Adsorption Properties and Synthesis of Silica Aerogel-Hollow Silica Microsphere Hybrid (Sandwich) Structure. J. Sol-Gel Sci. Technol. 2021, 100, 74–88. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Q.; Zhang, B.; Ye, F.; Gao, Y. Preparation and Characterization of Hollow Glass Microsphere Ceramics and Silica Aerogel/Hollow Glass Microsphere Ceramics Having Low Density and Low Thermal Conductivity. J. Alloys Compd. 2020, 831, 154737. [Google Scholar] [CrossRef]
- Grandcolas, M.; Jasinski, E.; Gao, T.; Jelle, B.P. Preparation of Low Density Organosilica Monoliths Containing Hollow Silica Nanospheres as Thermal Insulation Materials. Mater. Lett. 2019, 250, 151–154. [Google Scholar] [CrossRef]
- Kazakova, V.V.; Myakushev, V.D.; Strelkova, T.V.; Gvazava, N.G.; Muzafarov, A.M. Synthesis of Superbranched Ethylsilicates—Inorganic Dendritic Systems. Dokl. Akad. Nauk 1996, 349, 486–489. [Google Scholar]
- Kazakova, V.V.; Rebrov, E.A.; Myakushev, V.B.; Strelkova, T.V.; Ozerin, A.N.; Ozerina, L.A.; Chenskaya, T.B.; Sheiko, S.S.; Sharipov, E.Y.; Muzafarov, A.M. From a Hyperbranched Polyethoxysiloxane Toward Molecular Forms of Silica: A Polymer-Based Approach to the Monitoring of Silica Properties. In Silicones and Silicone-Modified Materials ACS Symposium Book Series 729; American Chemical Society: Washington, DC, USA, 2000; Volume 729, pp. 503–515. [Google Scholar]
- Jaumann, M.; Rebrov, E.A.; Kazakova, V.V.; Muzafarov, A.M.; Goedel, W.A.; Moller, M. Hyperbranched Polyalkoxysiloxanes via AB(3)-Type Monomers. Macromol. Chem. Phys. 2003, 204, 1014–1026. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Zhu, X.; Möller, M. Formation of Monodisperse Polymer@SiO2 Core–Shell Nanoparticles via Polymerization in Emulsions Stabilized by Amphiphilic Silica Precursor Polymers: HLB Dictates the Reaction Mechanism and Particle Size. Macromolecules 2019, 52, 5670–5678. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Zhu, X. Inclusion of Hydrophobic Liquids in Silica Aerogel Microparticles in an Aqueous Process: Microencapsulation and Extra Pore Creation. ACS Appl. Mater. Interfaces 2021, 13, 12230–12240. [Google Scholar] [CrossRef]
- Meshkov, I.B.; Kalinina, A.A.; Kazakova, V.V.; Demchenko, A.I. Densely Cross-Linked Polysiloxane Nanogels. Ineos Open 2020, 3, 118–132. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Polyakova, M.Y.; Subbotin, A.V.; Meshkov, I.B.; Bystrova, A.V.; Kulichikhin, V.G.; Muzafarov, A.M. Molecular Liquids Formed by Nanoparticles. J. Mol. Liq. 2019, 286, 110852. [Google Scholar] [CrossRef]
- Migulin, D.; Tatarinova, E.; Meshkov, I.; Cherkaev, G.; Vasilenko, N.; Buzin, M.; Muzafarov, A. Synthesis of the First Hyperbranched Polyorganoethoxysilsesquioxanes and Their Chemical Transformations to Functional Core-Shell Nanogel Systems. Polym. Int. 2016, 65, 72–83. [Google Scholar] [CrossRef]
Product | Ethoxy Group Substitution (mol%) | Mass of PMEOS (g) | Mass of PEG (g) | Yield (%)—(g) |
---|---|---|---|---|
PMEOS-PEG-5 | 5 | 40 | 4.5 | (99%)—43.7 |
PMEOS-PEG-10 | 10 | 40 | 9 | (99%)—47.5 |
PMEOS-PEG-20 | 20 | 40 | 18 | (99%)—55.2 |
Sample | Concentration of PMEOS-PEG in Toluene (%) | IFT (mN/m) |
---|---|---|
PMEOS-PEG-5 | 0.1 | 20.5 |
PMEOS-PEG-5 | 1 | 12.2 |
PMEOS-PEG-5 | 5 | 11.2 |
PMEOS-PEG-5 | 10 | 10 |
PMEOS-PEG-10 | 0.1 | 16.2 |
PMEOS-PEG-10 | 1 | 9.7 |
PMEOS-PEG-10 | 5 | 9.2 |
PMEOS-PEG-10 | 10 | 8.5 |
PMEOS-PEG-20 | 0.1 | 14 |
PMEOS-PEG-20 | 1 | 7.1 |
PMEOS-PEG-20 | 5 | 5.7 |
PMEOS-PEG-20 | 10 | 5.2 |
Sample | Concentration of PMEOS-PEG in Water (%) | IFT (mN/m) 1 |
---|---|---|
PMEOS-PEG-5 | 0.1 | 12.5 |
PMEOS-PEG-5 | 1 | 10 |
PMEOS-PEG-5 | 5 | - |
PMEOS-PEG-10 | 0.1 | 10.2 |
PMEOS-PEG-10 | 1 | 7 |
PMEOS-PEG-10 | 5 | - |
PMEOS-PEG-20 | 0.1 | 6.6 |
PMEOS-PEG-20 | 1 | 4.9 |
PMEOS-PEG-20 | 5 | 1.9 |
Before Annealing | After Annealing 1 | ||||||
---|---|---|---|---|---|---|---|
Sample | PMEOS-PEG-20:Hexane | Density, g/cm3 | Contact Angle, ° | Mass Loss, % | Density, g/cm3 | Contact Angle, ° | Specific Surface Area (BET), m2/g |
1 | 1:1 | 0.038 | 120 ± 7 | 59 | 0.015 | 140 ± 2 | 122 ± 7 |
2 | 2:1 | 0.040 | 120 ± 7 | 53 | 0.021 | 140 ± 2 | 337 ± 17 |
3 | 3:1 | 0.059 | 120 ± 7 | 55 | 0.026 | 140 ± 2 | 244 ± 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisov, K.; Kalinina, A.; Bystrova, A.; Muzafarov, A. Aerogel-Like Material Based on PEGylated Hyperbranched Polymethylethoxysiloxane. Polymers 2023, 15, 4012. https://doi.org/10.3390/polym15194012
Borisov K, Kalinina A, Bystrova A, Muzafarov A. Aerogel-Like Material Based on PEGylated Hyperbranched Polymethylethoxysiloxane. Polymers. 2023; 15(19):4012. https://doi.org/10.3390/polym15194012
Chicago/Turabian StyleBorisov, Kirill, Alexandra Kalinina, Aleksandra Bystrova, and Aziz Muzafarov. 2023. "Aerogel-Like Material Based on PEGylated Hyperbranched Polymethylethoxysiloxane" Polymers 15, no. 19: 4012. https://doi.org/10.3390/polym15194012
APA StyleBorisov, K., Kalinina, A., Bystrova, A., & Muzafarov, A. (2023). Aerogel-Like Material Based on PEGylated Hyperbranched Polymethylethoxysiloxane. Polymers, 15(19), 4012. https://doi.org/10.3390/polym15194012