Study on Thermal Stability and Fatigue Properties of SBS/CNT-Modified Asphalt Sealant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Preparation of Modified Asphalt Sealants
2.2. Experimental Methods
2.2.1. Conventional Tests
2.2.2. MSCR Tests
2.2.3. Frequency Sweep Test
3. Results and Discussion
3.1. High-Temperature Performance Analysis Based on the Softening Point and the Flow Value
3.2. Rheological Property Analysis Based on Frequency Sweep Test
3.2.1. Rutting Factor and Fatigue Factor
3.2.2. Energy Storage Modulus and Dissipation Modulus
3.2.3. Rheological Master Curve Fitting Based on CAM Model
3.3. Mechanical Properties of Sealants under Dynamic Load–Temperature Coupling Actions Based on MSCR Tests
3.3.1. Non-Recoverable Compliance and Recoverable Creep
3.3.2. Burgers Model Fits Creep Curves of Sealants
4. Conclusions
- (1)
- By comparing the softening point and flow value, C1.0S5F5 and C0.5S5F3 showed excellent high-temperature performance before and after aging compared to the ordinary commercially available sealants. Based on the range analysis, SBS and CNTs play a staple role in strengthening the heat resistance of sealants.
- (2)
- The SBS/CNT-modified asphalt sealants were more resistant to rutting than the commercially available sealants, and the addition of CNTs had a more obvious effect on the fatigue resistance of the sealants and can play a toughening role in sealants.
- (3)
- The CAM model fitting results show that the model correlates well with the modulus curve and can be used as an effective method for characterizing and predicting the viscoelastic behavior of sealants. The addition of CNTs can increase the glassy composite shear modulus and rheological index of asphalt, thereby increasing the shear strength and reducing the temperature sensitivity of asphalt. C1.0S5F5 had a better relaxation property, which can better avoid secondary cracking after the construction of the sealant.
- (4)
- According to the MSCR test, the high-temperature deformation resistance of the C1.0S5F5 sealant before aging was better, and the elastic recovery ability of the C1.0S5F5 and C0.5S5F3 sealants was significantly stronger than that of the MS1 sealant. CNTs act as short-fiber reinforcement between asphalt and SBS.
- (5)
- The correlation coefficients fitted using the Burgers model were all greater than 0.99, which is a good predictor of the viscoelastic intrinsic characterization of the sealants. With the Burgers model, C1.0S5F5 showed excellent deformation resistance under heavy traffic conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, Y.; Wu, S.; Zhang, Y.; Pang, Y.; Ma, Y. Investigation of the High-Temperature and Rheological Properties for Asphalt Sealant Modified by SBS and Rubber Crumb. Polymers 2022, 14, 2558. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wu, H.; Song, W.; Yin, J.; Zhang, Y.; Yu, J.; Wada, S.A. Thermal fatigue and cracking behaviors of asphalt mixtures under different temperature variations. Constr. Build. Mater. 2023, 369, 130623. [Google Scholar] [CrossRef]
- Zhang, H.; Sheng, X.; Wang, S.; Xu, T. Effects of different modifiers on thermal stability, constituents and microstructures of asphalt-based sealant. J. Therm. Anal. Calorim. 2020, 142, 1183–1192. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Q.; Yang, J.; Yang, R.; Zhu, J. Study of adhesion between crack sealant and pavement combining surface free energy measurement with molecular dynamics simulation. Constr. Build. Mater. 2020, 240, 117900. [Google Scholar] [CrossRef]
- Li, F.; An, Y.; Li, Y.; Chen, Y.; Zhou, S. Performance evaluation of hot-applied sealant for asphalt pavement with consideration of the ash content. Constr. Build. Mater. 2022, 327, 126938. [Google Scholar] [CrossRef]
- Badr, A.; von-Heuser-Mason, P. Field performance of cold- and hot-applied joint sealants. Proc. Inst. Civ. Eng. Constr. Mater. 2016, 169, 293–300. [Google Scholar] [CrossRef]
- Dong, Y.Y. The Failure Mechanism of Crack Sealant Based on the Weak Boundary Layer Theory. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2016. [Google Scholar]
- Wang, S.; Xu, L.; Liu, M.; Gao, Y.; Jia, Y.; Li, Y.; Chen, Z.; Wei, Z. Dynamic behavior of crack sealant bonding interface in the asphalt pavement crack repair structure under moving vehicle load. Case Stud. Constr. Mater. 2023, 18, e01821. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Al-Hadidy, A.; Loizos, A.; Partl, M.; Scarpas, T.; Al-Qadi, I. Performance evaluation of prepared gelled hot sealant in cold climates. In Proceedings of the 7th International RILEM Symposium on Advanced Testing and Characterisation of Bituminous Materials, Rhodes, Greece, 27–29 May 2009. [Google Scholar] [CrossRef]
- Gurjar, A.; Kim, H.B.; Moody, E.; Buch, N.J. Laboratory Investigation of Factors Affecting Bond Strength in Joint Sealants. Transp. Res. Rec. 1988, 1627, 13–21. [Google Scholar] [CrossRef]
- Cao, L.; Yang, C.; Dong, Z.; Wang, W.; Yin, H. Aging mechanism of hot-poured sealants for asphalt pavement under natural environmental exposure. Int. J. Pavement Eng. 2020, 23, 197–206. [Google Scholar] [CrossRef]
- Kim, J.; Jang, H.; Kim, N. Evaluation of potential applicability of modified solvent deasphalted residue as an asphalt crack sealant. Road Mater. Pavement Des. 2020, 23, 725–734. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.J.; Liu, Z. Influence of Carbon Nanotubes on Morphology of Asphalts Modified with Styrene-Butadiene-Styrene. Transp. Res. Rec. 2017, 2632, 130–139. [Google Scholar] [CrossRef]
- Xin, X.; Yao, Z.; Shi, J.; Liang, M.; Jiang, H.; Zhang, J.; Zhang, X.; Yao, K. Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites. Constr. Build. Mater. 2020, 262, 120100. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.; Tan, Y.; Liu, Z. Anti-ageing properties of styrene-butadiene-styrene copolymer-modified asphalt combined with multi-walled carbon nanotubes. Road Mater. Pavement Des. 2017, 18, 533–549. [Google Scholar] [CrossRef]
- Amin, I.; El-Badawy, S.M.; Breakah, T.; Ibrahim, M.H.Z. Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate. Constr. Build. Mater. 2016, 121, 361–372. [Google Scholar] [CrossRef]
- Wang, R.; Yue, J.; Li, R.; Sun, Y. Evaluation of Aging Resistance of Asphalt Binder Modified with Graphene Oxide and Carbon Nanotubes. J. Mater. Civ. Eng. 2019, 31, 04019274. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.; Tan, Y.; Liu, Z. Effect of multi-walled carbon nanotubes on the performance of styrene-butadiene-styrene copolymer modified asphalt. Mater. Struct. 2017, 50, 17. [Google Scholar] [CrossRef]
- Li, B.; Ren, X.Y.; Li, Y.B.; Ma, W.Z.; Li, H.L. Evaluation and selection of sealants and fillers using principal component analysis for cracks in asphalt concrete pavements. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2017, 32, 408–412. [Google Scholar] [CrossRef]
- Wang, P.; Liu, P.; Wang, J.; Wang, S.S.; Chang, Z.H. Effect of Carbon nanotubes on rheological properties of SBS modified asphalt. J. Shandong Jianzhu Univ. 2019, 34, 22–26. [Google Scholar] [CrossRef]
- Yang, S.H.; Al-Qadi, I.L.; McGraw, J.; Masson, J.-F.; McGhee, K.M. Threshold Identification and Field Validation of Performance-Based Guidelines to Select Hot-Poured Crack Sealants. Transp. Res. Rec. 2010, 2150, 87–95. [Google Scholar] [CrossRef]
- Ozer, H.; Solanki, P.; Yousefi, S.S.; Al-Qadi, I.L. Field Validation of Laboratory-Predicted Low-Temperature Performance of Hot-Poured Crack Sealants. Transp. Res. Rec. 2014, 2431, 57–66. [Google Scholar] [CrossRef]
- Liu, H.; Zeiada, W.; Al-Khateeb, G.G.; Shanableh, A.; Samarai, M. Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. Constr. Build. Mater. 2021, 269, 121320. [Google Scholar] [CrossRef]
- Luo, X.; Ling, J.; Li, H.; Zhang, Y.; Li, Y. Nonlinear viscoelastoplastic kinetics for high-temperature performance of modified asphalt binders. Mech. Mater. 2023, 180, 104612. [Google Scholar] [CrossRef]
- ASTM D7175-2005; American Standard. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM: West Conshohocken, PA, USA, 2005.
- Zhang, X.; Zhou, X.; Ji, W.; Zhang, F.; Otto, F. Characterizing the mechanical properties of Multi-Layered CNTs reinforced SBS modified Asphalt-Binder. Constr. Build. Mater. 2021, 296, 123658. [Google Scholar] [CrossRef]
- Li, J. Research on Mechanism and Application of Fumed Silica in Asphalt Sealant. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. [Google Scholar]
- Pouranian, M.R.; Notani, M.A.N.; Tabesh, M.T.; Nazeri, B.; Shishehbor, M. Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives. Constr. Build. Mater. 2020, 238, 117707. [Google Scholar] [CrossRef]
- Dong, F.; Yu, X.; Liu, S.; Wei, J. Rheological behaviors and microstructure of SBS/CR composite modified hard asphalt. Constr. Build. Mater. 2016, 115, 285–293. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 151, 464–478. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, G.; Chen, X.; Zhou, J.; Sun, F. Rheological properties of SBS/CR-C composite modified asphalt binders in different aging conditions. Constr. Build. Mater. 2019, 215, 1–8. [Google Scholar] [CrossRef]
- Qian, C.; Fan, W.; Liang, M.; He, Y.; Ren, S.; Lv, X.; Nan, G.; Luo, H. Rheological properties, storage stability and morphology of CR/SBS composite modified asphalt by high-cured method. Constr. Build. Mater. 2018, 193, 312–322. [Google Scholar] [CrossRef]
- Xiao, F.P.; Amirkhanian, S.; Wang, H.N.; Hao, P.W. Rheological property investigations for polymer and polyphosphoric acid modified asphalt binders at high temperatures. Constr. Build. Mater. 2014, 64, 316–323. [Google Scholar] [CrossRef]
- Zhang, Z.; Oeser, M. Energy dissipation and rheological property degradation of asphalt binder under repeated shearing with different oscillation amplitudes. Int. J. Fatigue 2021, 152, 106417. [Google Scholar] [CrossRef]
- Wang, P. Interfacial Enhancement Mechanism and Rheological Properties of Composited Polymer Modified Asphalt with Carbon Nanotubes. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Qian, C.; Fan, W.; Yang, G. Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt. Constr. Build. Mater. 2020, 235, 117517. [Google Scholar] [CrossRef]
- Saboo, N.; Mudgal, A. Modelling creep and recovery response of asphalt binders using generalized burgers model. Pet. Sci. Technol. 2018, 36, 1627–1634. [Google Scholar] [CrossRef]
- Li, S. Multiscale Research on High-Temperature Creep Behaviour of Asphalt Mixture. Ph.D. Thesis, School of Transportation Southeast University, Nanjing, China, 2020. [Google Scholar]
- Liu, K. Study on Preparation and Properties of Nano High Viscosity Composite Modified Asphalt. Master’s Thesis, Shandong Jianzhu University, Jinan, China, 2021. [Google Scholar]
Index | Unit | Standard Value | Measured Results |
---|---|---|---|
Penetration (25 °C, 100 g, s) | 0.1 mm | 80~100 (0.01 mm) | 84 (0.01 mm) |
Softening Point (Global Method) | °C | ≥45 (°C) | 46.0 (°C) |
Ductility (15 °C) | cm | ≥20 (cm) | >100 (cm) |
Inner Diameter (nm) | Outer Diameter (nm) | Length (µm) | Specific Surface Area (m2/g) | Purity (%) | Grain Size D50 (µm) |
---|---|---|---|---|---|
3–5 | 8–15 | 8–14 | ≥250 | >99 | ≤25 |
Shape | Styrene/Butadiene | Tensile Strength (MPa) | Molecular Weight (×10,000) |
---|---|---|---|
Star | 40/60 | 26 | 16 ± 2 |
Factors | Levels | ||
---|---|---|---|
CNT Content (wt%) | SBS Content (wt%) | Furfural-Extracted Oil Content (wt%) | |
1 | 0.2 | 3 | 3 |
2 | 0.5 | 4 | 4 |
3 | 1.0 | 5 | 5 |
Test Number | CNT Content (wt%) | SBS Content (wt%) | Furfural-Extracted Oil Content (wt%) | Group No. |
---|---|---|---|---|
1 | 0.2 | 3 | 3 | C0.2S3F3 |
2 | 0.2 | 4 | 5 | C0.2S4F5 |
3 | 0.2 | 5 | 4 | C0.2S5F4 |
4 | 0.5 | 3 | 5 | C0.5S3F5 |
5 | 0.5 | 4 | 4 | C0.5S4F4 |
6 | 0.5 | 5 | 3 | C0.5S5F3 |
7 | 1.0 | 3 | 4 | C1.0S3F4 |
8 | 1.0 | 4 | 3 | C1.0S4F3 |
9 | 1.0 | 5 | 5 | C1.0S5F5 |
Evaluation Indicators | Level of Factors | CNT Content | SBS Content | Furfural-Extracted Oil Content |
---|---|---|---|---|
Softening point (°C) | k1 | 69.7 | 62.5 | 70.8 |
k2 | 73.6 | 75.1 | 73.4 | |
k3 | 75.4 | 81.1 | 74.4 | |
Extreme variance | 5.7 | 18.6 | 3.6 | |
Flow value (mm) | k1 | 24.7 | 30.0 | 15.9 |
k2 | 19.0 | 12.7 | 13.5 | |
k3 | 5.5 | 6.6 | 19.9 | |
Extreme variance | 19.2 | 23.4 | 6.0 |
Specimen Number | Test Temperature | Parallel Plate Diameter | Thickness | Frequency Range | Loading Strain |
---|---|---|---|---|---|
C0.5S5F3, C1.0S5F5, MS1, MS2 | 20 °C, 30 °C | 8 mm | 2 mm | 0.1~100 rad/s | Within the linear viscoelastic range |
Sample | /Hz | M | K | R2 |
---|---|---|---|---|
C1.0S5F5 | 1837.3 | 0.8749 | 0.1468 | 0.999 |
C0.5S5F3 | 1338.8 | 0.9205 | 0.1795 | 0.999 |
MS1 | 1303.6 | 1.3042 | 0.0696 | 0.999 |
MS2 | 2942.1 | 1.0936 | 0.0488 | 0.999 |
Stress | R2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.1 kPa | 3.2 kPa | ||||||||
Sample | /kPa | /kPa·s | /kPa | /kPa·s | /kPa | /kPa·s | /kPa | /kPa·s | |
C1.0S5F5 | 0.0145 | 0.00663 | 0.0378 | 0.0227 | 1.33 | 243.18 | 7.87 | 30.67 | 0.99876 |
C0.5S5F3 | 0.0028 | 0.0176 | 0.0791 | 0.0272 | 0.0017 | 0.0113 | 0.6761 | 0.0616 | 0.99812 |
MS1 | 1.02 | 19.28 | 81.35 | 20.76 | 7.57 × 10−2 | 11.60 | 7.51 × 10−2 | 3.08 | 0.99942 |
MS2 | 24.31 | 140.75 | 135.68 | 34.28 | 20.06 | 114.98 | 497.78 | 36.62 | 0.99911 |
After aged | |||||||||
C1.0S5F5 | 0.91 | 4.97 | 66.16 | 11.81 | 1.33 | 243.18 | 7.87 | 30.67 | 0.99945 |
C0.5S5F3 | 0.0081 | 0.0230 | 0.00627 | 0.0218 | 0.0024 | 0.2270 | 0.0125 | 0.0474 | 0.99873 |
MS1 | 1.32 | 21.59 | 100.41 | 27.59 | 0.096 | 10.34 | 0.94 | 2.81 | 0.99905 |
MS2 | 15.12 | 756.87 | 159.09 | 26.62 | 31.49 | 107.26 | 381.59 | 32.81 | 0.99892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Wu, S.; Bi, H.; Tian, L. Study on Thermal Stability and Fatigue Properties of SBS/CNT-Modified Asphalt Sealant. Polymers 2023, 15, 3968. https://doi.org/10.3390/polym15193968
Gong Y, Wu S, Bi H, Tian L. Study on Thermal Stability and Fatigue Properties of SBS/CNT-Modified Asphalt Sealant. Polymers. 2023; 15(19):3968. https://doi.org/10.3390/polym15193968
Chicago/Turabian StyleGong, Yafeng, Shuzheng Wu, Haipeng Bi, and Lihua Tian. 2023. "Study on Thermal Stability and Fatigue Properties of SBS/CNT-Modified Asphalt Sealant" Polymers 15, no. 19: 3968. https://doi.org/10.3390/polym15193968
APA StyleGong, Y., Wu, S., Bi, H., & Tian, L. (2023). Study on Thermal Stability and Fatigue Properties of SBS/CNT-Modified Asphalt Sealant. Polymers, 15(19), 3968. https://doi.org/10.3390/polym15193968