Enhanced Adsorption Performance Cross-Linked Chitosan/Citrus reticulata Peel Waste Composites as Low-Cost and Green Bio-Adsorbents: Kinetic, Equilibrium Isotherm, and Thermodynamic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Cross-Linked C/CRPW Composites
2.3. Characterization of the CRPW and Cross-Linked C/CRPW Composites
2.4. Batch Adsorption Studies
3. Results
3.1. Characterization of the Cross-Linked C/CRPW Composites
3.2. Effect of Contact Time and Adsorption Kinetic Models
3.3. Effect of Initial Solution pH
3.4. Effect of Adsorbent Dosage
3.5. Effect of Initial CR Concentration
3.6. Adsorption Isotherms
3.7. Effect of Temperature and Adsorption Thermodynamics
3.8. Reusability Studies
3.9. Adsorption Mechanism of CR by the CRPW and Cross-Linked C/CRPW Composites
3.10. Comparative Study
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.D.; Singh, A.; Khan, M.Z.; Tabraiz, S.; Sheikh, J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process Eng. 2023, 53, 103579. [Google Scholar] [CrossRef]
- Moradihamedani, P. Recent advances in dye removal from wastewater by membrane technology: A review. Polym. Bull. 2022, 79, 2603–2631. [Google Scholar] [CrossRef]
- Gadekar, M.R.; Ahammed, M.M. Coagulation/flocculation process for dye removal using water treatment residuals: Modelling through artificial neural networks. Desalination Water Treat. 2016, 57, 26392–26400. [Google Scholar] [CrossRef]
- Constantin, M.; Asmarandei, I.; Harabagiu, V.; Ghimici, L.; Ascenzi, P.; Fundueanu, G. Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres. Carbohydr. Polym. 2013, 91, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Ikhlaq, A.; Zafar, M.; Javed, F.; Yasar, A.; Akram, A.; Shabbir, S.; Qi, F. Catalytic ozonation for the removal of reactive black 5 (RB-5) dye using zeolites modified with CuMn2O4/gC3N4 in a synergic electro flocculation-catalytic ozonation process. Water Sci. Technol. 2021, 84, 1943–1953. [Google Scholar] [CrossRef] [PubMed]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.; Saint, C. Adsorption of congo red by three Australian kaolins. Appl. Clay Sci. 2009, 43, 465–472. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Review on nickel-based adsorption materials for Congo red. J. Hazard. Mater. 2021, 403, 123559. [Google Scholar] [CrossRef]
- Ausavasukhi, A.; Kampoosaen, C.; Kengnok, O. Adsorption characteristics of Congo red on carbonized leonardite. J. Clean. Prod. 2016, 134, 506–514. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Wang, M.; Chen, B.; Zhang, Y.; Sun, Y.; Chen, K.; Du, Q.; Jing, Z.; Jin, Y. Preparation of MIL-88A micro/nanocrystals with different morphologies in different solvents for efficient removal of Congo red from water: Synthesis, characterization, and adsorption mechanisms. Microporous Mesoporous Mater. 2022, 345, 112241. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Zhang, L.; Pei, L.; Xue, H.; Li, Z. Adsorption of methylene blue and Congo red from aqueous solution on 3D MXene/carbon foam hybrid aerogels: A study by experimental and statistical physics modeling. J. Environ. Chem. Eng. 2023, 11, 109206. [Google Scholar] [CrossRef]
- Onizuka, T.; Iwasaki, T. Low-temperature solvent-free synthesis of polycrystalline hematite nanoparticles via mechanochemical activation and their adsorption properties for Congo red. Solid State Sci. 2022, 129, 106917. [Google Scholar] [CrossRef]
- Kavitha, D.; Namasivayam, C. Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater. Dyes Pigment. 2007, 74, 237–248. [Google Scholar] [CrossRef]
- Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C. Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 2016, 9, S707–S716. [Google Scholar] [CrossRef]
- Sudrajat, H.; Susanti, A.; Putri, D.K.Y.; Hartuti, S. Mechanistic insights into the adsorption of methylene blue by particulate durian peel waste in water. Water Sci. Technol. 2021, 84, 1774–1792. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, X.; Wang, R.; Zhang, Y.; Wang, X. Biosorption of Cd2+ from aqueous solution by Ca2+/Mg2+ type Citrus paradisi Macf. peel biosorbents. Water Sci. Technol. 2019, 80, 1205–1212. [Google Scholar] [CrossRef]
- Eldeeb, T.M.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; El-Nemr, M.A.; Hassaan, M.A.; Osibote, O.A.; Ragab, S.; Okundaye, B.; Balogun, V.A.; et al. Biosorption of acid brown 14 dye to mandarin-CO-TETA derived from mandarin peels. Biomass Convers. Biorefin. 2022; (in press). [Google Scholar] [CrossRef]
- Shakoor, S.; Nasar, A. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. J. Taiwan Inst. Chem. Eng. 2016, 66, 154–163. [Google Scholar] [CrossRef]
- Altunkaynak, Y.; Canpolat, M.; Yavuz, Ö. Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: Equilibrium, kinetic and thermodynamic studies. J. Iran. Chem. Soc. 2022, 19, 2437–2448. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Cignolo, D.; Fini, P.; Fanelli, F.; Cosma, P. From agricultural wastes to a resource: Kiwi Peels, as long-lasting, recyclable adsorbent, to remove emerging pollutants from water. The case of Ciprofloxacin removal. Sustain. Chem. Pharm. 2022, 29, 100749. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, Y.G.; Chang, J.; Bae, H.J. A high-yield process for production of biosugars and hesperidin from mandarin peel wastes. Molecules 2020, 25, 4286. [Google Scholar] [CrossRef]
- Jang, S.K.; Jung, C.D.; Seong, H.; Myung, S.; Kim, H. An integrated biorefinery process for mandarin peel waste elimination. J. Clean. Prod. 2022, 371, 133594. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Zaman, Q.; Kausar, A.; Noreen, S.; Iqbal, M. Efficient remediation of Zr (IV) using citrus peel waste biomass: Kinetic, equilibrium and thermodynamic studies. Ecol. Eng. 2016, 95, 216–228. [Google Scholar] [CrossRef]
- Sadiq, A.C.; Olasupo, A.; Ngah, W.S.W.; Rahim, N.Y.; Suah, F.B.M. A decade development in the application of chitosan-based materials for dye adsorption: A short review. Int. J. Biol. Macromol. 2021, 191, 1151–1163. [Google Scholar] [CrossRef]
- Barus, D.A.; Humaidi, S.; Ginting, R.T.; Sitepu, J. Enhanced adsorption performance of chitosan/cellulose nanofiber isolated from durian peel waste/graphene oxide nanocomposite hydrogels. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100650. [Google Scholar] [CrossRef]
- Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium (VI) by flocculation/adsorption. Carbohydr. Polym. 2017, 157, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Abdić, Š.; Memić, M.; Šabanović, E.; Sulejmanović, J.; Begić, S. Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: Tangerine peel. Int. J. Environ. Sci. Technol. 2018, 15, 2511–2518. [Google Scholar] [CrossRef]
- Pavithra, S.; Thandapani, G.; Sugashini, S.; Sudha, P.N.; Alkhamis, H.H.; Alrefaei, A.F.; Almutairi, M.H. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr (VI) and Cu (II) ions from synthetic wastewater. Chemosphere 2021, 271, 129415. [Google Scholar] [CrossRef]
- Li, B.; Shan, C.L.; Zhou, Q.; Fang, Y.; Wang, Y.L.; Xu, F.; Han, L.R.; Ibrahim, M.; Guo, L.B.; Xie, G.L.; et al. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar. Drugs 2013, 11, 1534–1552. [Google Scholar] [CrossRef]
- Aslam, U.; Javed, T. Potential of Citrus limetta peel powder (CLPP) for adsorption of hazardous Congo red dye from wastewater. Water Pract. Technol. 2023, 18, 1051–1073. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Peng, H.; Wang, Z.; Wu, J.; Liu, Z. Dye adsorption from aqueous solution by cellulose/chitosan composite: Equilibrium, kinetics, and thermodynamics. Fibers Polym. 2018, 19, 340–349. [Google Scholar] [CrossRef]
- Kalidhasan, S.; Gupta, P.A.; Cholleti, V.R.; Kumar, A.S.K.; Rajesh, V.; Rajesh, N. Microwave assisted solvent free green preparation and physicochemical characterization of surfactant-anchored cellulose and its relevance toward the effective adsorption of chromium. J. Colloid Interface Sci. 2012, 372, 88–98. [Google Scholar] [CrossRef]
- Ghorai, S.; Sarkar, A.K.; Panda, A.B.; Pal, S. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 2013, 144, 485–491. [Google Scholar] [CrossRef]
- Krishna Kumar, A.S.; Warchol, J.; Matusik, J.; Tseng, W.L.; Rajesh, N.; Bajda, T. Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel. NPJ Clean Water 2022, 5, 24. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Advances in water pollution research: Removal of biologically resistant pollutant from wastewater by adsorption. In Proceedings of the 1st International Conference on Water Pollution Research, London, UK, 3–7 September 1962; Pergamon Press: Oxford, UK, 1962; pp. 231–266. [Google Scholar]
- Xie, B.; Qin, J.; Wang, S.; Li, X.; Sun, H.; Chen, W. Adsorption of phenol on commercial activated carbons: Modelling and interpretation. Int. J. Environ. Res. Public Health 2020, 17, 789. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.E.; Hu, Y.Y.; Xie, L.; Peng, K. Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads. Bioresour. Technol. 2008, 99, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Ngah, W.W.; Teong, L.C.; Toh, R.H.; Hanafiah, M.A.K.M. Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan–zeolite composites. Chem. Eng. J. 2013, 223, 231–238. [Google Scholar] [CrossRef]
- Alardhi, S.M.; Fiyadh, S.S.; Salman, A.D.; Adelikhah, M. Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon 2023, 9, e12888. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc. 1939, 61, 2228–2230. [Google Scholar] [CrossRef]
- Pursell, C.J.; Hartshorn, H.; Ward, T.; Chandler, B.D.; Boccuzzi, F. Application of the Temkin model to the adsorption of CO on gold. J. Phys. Chem. C 2011, 115, 23880–23892. [Google Scholar] [CrossRef]
- Dubinin, M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Mate, C.J.; Mishra, S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int. J. Biol. Macromol. 2020, 151, 677–690. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Gao, W. Reviewing textile wastewater produced by industries: Characteristics, environmental impacts, and treatment strategies. Water Sci. Technol. 2022, 85, 2076–2096. [Google Scholar] [CrossRef]
- Zosenko, O.O.; Kushch, O.V.; Kompanets, M.O.; Anishchenko, V.M.; Shendrik, A.N. Aliphatic oxime 3-(hydroxyimino) pentan-2, 4-dione as new potential mediator for laccase-catalyzed decolorization of dyes. J. Environ. Chem. Eng. 2022, 10, 108149. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Ananthashankar, R.; Alhattab, M.V.V.R.; Ramakrishnan, V.V. Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process Technol. 2014, 5, 1–19. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J.; Keeler, J. Atkins’ Physical Chemistry; OUP Oxford: Oxford, UK, 2017. [Google Scholar]
- Al-Harby, N.F.; Albahly, E.F.; Mohamed, N.A. Kinetics, isotherm and thermodynamic studies for efficient adsorption of Congo Red dye from aqueous solution onto novel cyanoguanidine-modified chitosan adsorbent. Polymers 2021, 13, 4446. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, S.; Chatterjee, B.P.; Guha, A.K. Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 146–152. [Google Scholar] [CrossRef]
- Barathi, M.; Kumar, A.S.K.; Rajesh, N. Aluminium hydroxide impregnated macroreticular aromatic polymeric resin as a sustainable option for defluoridation. J. Environ. Chem. Eng. 2015, 3, 630–641. [Google Scholar] [CrossRef]
- Wekoye, J.N.; Wanyonyi, W.C.; Wangila, P.T.; Tonui, M.K. Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environ. Toxicol. Chem. 2020, 2, 24–31. [Google Scholar] [CrossRef]
- Namasivayam, C.; Kavitha, D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigment. 2002, 54, 47–58. [Google Scholar] [CrossRef]
- Sivarama Krishna, L.; Sreenath Reddy, A.; Muralikrishna, A.; Wan Zuhairi, W.Y.; Osman, H.; Varada Reddy, A. Utilization of the agricultural waste (Cicer arientinum Linn fruit shell biomass) as biosorbent for decolorization of Congo red. Desalination Water Treat. 2015, 56, 2181–2192. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, L.Y.; Liang, Y.; Chen, Q.; Li, Z.S.; Li, C.H.; Wang, Z.H.; Li, W. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, R.; Dai, Z.; Yu, Q.; Miao, Y.; Xu, R. Facile preparation of a polypyrrole modified Chinese yam peel-based adsorbent: Characterization, performance, and application in removal of Congo red dye. RSC Adv. 2022, 12, 9424–9434. [Google Scholar] [CrossRef]
- Dbik, A.; Bentahar, S.; El Khomri, M.; El Messaoudi, N.; Lacherai, A. Adsorption of Congo red dye from aqueous solutions using tunics of the corm of the saffron. Mater. Today Proc. 2020, 22, 134–139. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Li, B. Adsorption behaviour of congo red by cellulose/chitosan hydrogel beads regenerated from ionic liquid. Desalination Water Treat. 2016, 57, 16970–16980. [Google Scholar] [CrossRef]
- Chan, K.; Morikawa, K.; Shibata, N.; Zinchenko, A. Adsorptive removal of heavy metal ions, organic dyes, and pharmaceuticals by dna–chitosan hydrogels. Gels 2021, 7, 112. [Google Scholar] [CrossRef]
- Nangia, S.; Katyal, D.; Warkar, S.G. Thermodynamics, kinetics and isotherm studies on the removal of anionic Azo-dye (Congo red) using synthesized Chitosan/Moringa oleifera gum hydrogel composites. Sep. Sci. Technol. 2023, 58, 13–28. [Google Scholar] [CrossRef]
- Han, X.; Li, R.; Miao, P.; Gao, J.; Hu, G.; Zhao, Y.; Chen, T. Design, synthesis and adsorption evaluation of bio-based lignin/chitosan beads for congo red removal. Materials 2022, 15, 2310. [Google Scholar] [CrossRef]
Samples | BET Surface Area (m2/g) | BJH Pore Volume (cm3/g) | BJH Pore Size (A°) |
---|---|---|---|
1.75C/0.25CRPW | 10.04 | 0.06225 | 29.83 |
1.50C/0.50CRPW | 13.86 | 0.1014 | 16.17 |
1.25C/0.75CRPW | 20.42 | 0.1500 | 16.39 |
CRPW | 17.61 | 0.02269 | 18.85 |
Models | Parameters | Values | |||
---|---|---|---|---|---|
1.75C/0.25CRPW | 1.50C/0.50CRPW | 1.25C/0.75CRPW | CRPW | ||
Experimental result | qe,exp (mg/g) | 5.69 | 6.94 | 12.35 | 17.35 |
Lagergren’s pseudo-first-order | qe,cal (mg/g) | 5.09 | 6.34 | 12.81 | 5.59 |
k1 (1/h) | 0.2021 | 0.2775 | 0.2763 | 1.4133 | |
R2 | 0.9950 | 0.9652 | 0.9893 | 0.8725 | |
Pseudo-second-order | qe,cal (mg/g) | 6.39 | 7.78 | 13.91 | 17.54 |
k2 (g/mg h) | 0.0545 | 0.0548 | 0.0275 | 1.0481 | |
R2 | 0.9971 | 0.9963 | 0.9968 | 0.9999 | |
Intraparticle diffusion | kid,1 (mg/g h0.5) | 1.7985 | 2.4436 | 4.0972 | 3.4778 |
C1 | −0.1430 | −0.2177 | −0.3548 | 13.075 | |
R2 | 0.9901 | 0.9876 | 0.9968 | 0.9623 | |
kid,2 (mg/g h0.5) | 1.0920 | 1.0936 | 2.4286 | 0.5309 | |
C2 | 1.5399 | 3.0752 | 3.5203 | 16.296 | |
R2 | 0.9954 | 0.9997 | 0.9984 | 0.9851 | |
kid,3 (mg/g h0.5) | 0.2411 | 0.1211 | 0.1380 | - | |
C3 | 4.5149 | 6.3582 | 11.682 | - | |
R2 | 0.9972 | 0.9551 | 0.9870 | - |
Isotherm | Constants | 1.75C/0.25CRPW | 1.50C/0.50CRPW | 1.25C/0.75CRPW | CRPW |
---|---|---|---|---|---|
Langmuir | qmax,L (mg/g) | 55.56 | 58.48 | 97.09 | 54.05 |
KL (L/mg) | 0.0251 | 0.0260 | 0.0243 | 0.0391 | |
RL | 0.6659–0.2851 | 0.6581–0.2779 | 0.6729–0.2915 | 0.5608–0.2034 | |
R2 | 0.9895 | 0.9764 | 0.9714 | 0.9774 | |
Freundlich | n | 1.4102 | 1.4098 | 1.2472 | 1.5248 |
KF ((mg/g)(mg/L)−1/n) | 2.115 | 2.284 | 2.886 | 3.185 | |
R2 | 0.9904 | 0.9907 | 0.9908 | 0.9889 | |
Temkin | BT (J/mol) | 10.88 | 11.28 | 18.56 | 11.22 |
KT (L/mg) | 0.3003 | 0.3193 | 0.1706 | 0.4301 | |
R2 | 0.9844 | 0.9771 | 0.9520 | 0.9786 | |
Dubinin-Radushkevich | qmax,D-R (mg/g) | 23.50 | 24.23 | 30.66 | 25.92 |
KD-R (mol2/J2) | 8 × 10−6 | 7 × 10−6 | 4 × 10−6 | 5 × 10−6 | |
E (kJ/mol) | 0.250 | 0.267 | 0.353 | 0.316 | |
R2 | 0.8736 | 0.8631 | 0.9049 | 0.8808 |
Thermodynamic Parameters | T (K) | 1.75C/0.25CRPW | 1.50C/0.50CRPW | 1.25C/0.75CRPW | CRPW |
---|---|---|---|---|---|
ΔG° (J/mol) | 298.15 | 1052.27 | 668.89 | −878.22 | 177.40 |
308.15 | 199.92 | −164.92 | −1691.12 | −171.24 | |
318.15 | −652.43 | −998.73 | −2504.01 | −519.88 | |
328.15 | −1504.78 | −1832.54 | −3316.90 | −868.51 | |
ΔH° (kJ/mol) | 26.465 | 25.528 | 23.358 | 10.572 | |
ΔS° (J/mol·K) | 85.235 | 83.38 | 81.29 | 34.86 |
Adsorbent | Adsorption Capacity (mg/g) | Reference | |
---|---|---|---|
Agricultural Waste | Cabbage waste powder | 2.313 | [54] |
Activated carbon prepared from coir pith | 6.72 | [55] | |
Bengal gram fruit shell | 22.22 | [56] | |
Coconut-based activated carbon fibers | 22.1 | [57] | |
Chinese yam peel–polypyrrole composites | 86.66 | [58] | |
Tunics of the corm of the saffron | 6.2 | [59] | |
CRPW | 36.50 | Present work | |
Chitosan-based Composites | Cellulose/chitosan | 40.00 | [60] |
DNA-chitosan | 12.60 | [61] | |
Chitosan/Moringa oleifera gum | 50.25 | [62] | |
Lignin/chitosan | 173.0 | [63] | |
1.75C/0.25CRPW | 38.92 | Present work | |
1.50C/0.50CRPW | 39.66 | Present work | |
1.25C/0.75CRPW | 43.57 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akin Sahbaz, D. Enhanced Adsorption Performance Cross-Linked Chitosan/Citrus reticulata Peel Waste Composites as Low-Cost and Green Bio-Adsorbents: Kinetic, Equilibrium Isotherm, and Thermodynamic Studies. Polymers 2023, 15, 3246. https://doi.org/10.3390/polym15153246
Akin Sahbaz D. Enhanced Adsorption Performance Cross-Linked Chitosan/Citrus reticulata Peel Waste Composites as Low-Cost and Green Bio-Adsorbents: Kinetic, Equilibrium Isotherm, and Thermodynamic Studies. Polymers. 2023; 15(15):3246. https://doi.org/10.3390/polym15153246
Chicago/Turabian StyleAkin Sahbaz, Deniz. 2023. "Enhanced Adsorption Performance Cross-Linked Chitosan/Citrus reticulata Peel Waste Composites as Low-Cost and Green Bio-Adsorbents: Kinetic, Equilibrium Isotherm, and Thermodynamic Studies" Polymers 15, no. 15: 3246. https://doi.org/10.3390/polym15153246
APA StyleAkin Sahbaz, D. (2023). Enhanced Adsorption Performance Cross-Linked Chitosan/Citrus reticulata Peel Waste Composites as Low-Cost and Green Bio-Adsorbents: Kinetic, Equilibrium Isotherm, and Thermodynamic Studies. Polymers, 15(15), 3246. https://doi.org/10.3390/polym15153246