Durability of Two Epoxy Adhesive BFRP Joints Dipped in Seawater under High Temperature Environment
Abstract
:1. Introduction
2. Experimental Process
2.1. Materials
2.2. Single-Lap Joint Design
2.3. Experimental Setups
2.4. Specific Test Methods
2.4.1. Water Absorption Test
2.4.2. Differential Scanning Calorimetry
2.4.3. Thermogravimetric Analysis—Differential Thermogravimetry
2.4.4. Quasi-Static Tensile Test
3. Results and Analysis
3.1. Moisture Absorption Rate of Dumbbell Specimens
3.2. DSC Analysis
3.3. TGA-DTG Test
3.4. Joint Failure Strength Analysis
3.5. Failure Displacement Analysis
3.6. Failure Mode Analysis
3.6.1. Analysis of Failure Section Morphology
3.6.2. Micromorphology Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Lu, Y.; Rao, Y.; Wei, N.; Ban, J.; Peng, Y.; Yao, S.; Ahzi, S. New insights into the synergistic influence of voids and interphase characteristics on effective properties of unidirectional composites. Compos. Struct. 2020, 255, 112862. [Google Scholar] [CrossRef]
- Lin, J.; Sun, C.; Min, J.; Wan, H.; Wang, S. Effect of atmospheric pressure plasma treatment on surface physicochemical properties of carbon fiber reinforced polymer and its interfacial bonding strength with adhesive. Compos. Part B Eng. 2020, 199, 108237. [Google Scholar] [CrossRef]
- Zhou, A.; Qin, R.; Chow, C.L.; Lau, D. Bond integrity of aramid, basalt and carbon fiber reinforced polymer bonded wood composites at elevated temperature. Compos. Struct. 2020, 245, 112342. [Google Scholar] [CrossRef]
- Cui, J.; Gao, S.; Jiang, H.; Huang, X.; Lu, G.; Li, G. Adhesive bond-electromagnetic rivet hybrid joining technique for CFRP/Al structure: Process, design and property. Compos. Struct. 2020, 244, 112316. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, Z.; Wei, K.; Wang, F.; Han, X. Theoretical study and physical tests of circular hole-edge stress concentration in long glass fiber reinforced polypropylene composite. Compos. Struct. 2020, 236, 111884. [Google Scholar] [CrossRef]
- Liu, S.; Yang, T.; Liu, C.; Jin, Y.; Sun, D.; Shen, Y. Modelling and experimental validation on drilling delamination of aramid fiber reinforced plastic composites. Compos. Struct. 2020, 236, 111907. [Google Scholar] [CrossRef]
- Altalmas, A.; Refai, A.E.; Abed, F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions. Constr. Build. Mater. 2015, 81, 162–171. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Bella, G.D.; Valenza, A. A review on basalt fifibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. SCFs in tubular X-connections retrofitted with FRP under in-plane bending load. Compos. Struct. 2021, 274, 114314. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. SCFs in tubular X-joints retrofitted with FRP under out-of-plane bending moment. Mar. Struct. 2021, 79, 103010. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Xiang, Y.; Pan, Q.; Chen, C.; Liu, J.; Hu, X. Effect of hygrothermal-mechanical exposure on the residual strength of adhesively bonded joints. Int. J. Adhes. Adhes. 2020, 100, 102616. [Google Scholar] [CrossRef]
- Gonilha, J.A.; Barros, J.; Correia, J.R.; Sena-Cruz, J.; Branco, F.A.; Ramos, L.F.; Gonçalves, D.; Alvim, M.R.; Santos, T. Static, dynamic and creep behavior of a full-scale GFRP-SFRSCC hybrid footbridge. Compos. Struct. 2014, 118, 496–509. [Google Scholar] [CrossRef]
- Keller, T.; Theodorou, N.A.; Vassilopoulos, A.P.; Castro, J.D. Effect of natural weathering on durability of pultruded glass fiber–reinforced bridge and building structures. J. Compos. Constr. 2015, 20, 04015025. [Google Scholar] [CrossRef]
- Jingxin, N.; Wenlong, M.; Guofeng, Q.; Wei, T.; Leixin, P. Effect of Temperature on the Mechanical Properties of Adhesively Bonded Basalt frp-aluminum Alloy Joints in the Automotive Industry. Int. J. Adhes. Adhes. 2018, 85, 138–148. [Google Scholar] [CrossRef]
- Sousa, J.M.; Correia, J.R.; Gonilha, J.; Cabral-Fonseca, S.; Firmo, J.P.; Keller, T. Durability of adhesively bonded joints between pultruded GFRP adherends under hygrothermal and natural ageing. Compos. Part B Eng. 2019, 158, 475–488. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Li, M.; Wei, K.; Li, S. Mechanical behavior and progressive failure analysis of riveted, bonded and hybrid joints with CFRP-aluminum dissimilar materials. Thin Wall Struct. 2019, 139, 271–280. [Google Scholar] [CrossRef]
- Li, H.; Zhang, K.; Fan, X.; Cheng, H.; Xu, G.; Suo, H. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites. Compos. Part B Eng. 2019, 173, 106910. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Gellert, E.; Burchill, P.; Challis, K. Review of advanced composite structures for naval ships and submarines. Compos. Struct. 2001, 53, 21–42. [Google Scholar] [CrossRef]
- Tran, P.; Nguyen, Q.T.; Lau, K.T. Fire performance of polymer-based composites for maritime infrastructure. Composites 2018, 155, 31–48. [Google Scholar] [CrossRef]
- Jianze, L.; Jingxin, N.; Wei, T.; Wenlong, M.; Guangbin, W.; Yuan, G. Comparative study on mechanical properties of aluminum alloy and BFRP single lap joints with hygrothermal aging. J. Adhes. 2021, 97, 918–935. [Google Scholar] [CrossRef]
- Ray, B.C.; Rathore, D. Environmental damage and degradation of FRP composites: A review report. Polym. Compos. 2015, 36, 410–423. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.P.; Hicks, C.; Carlson, B.E.; Yang, X.; Zhou, Q. Effect of Prelube, Surface Coating and Substrate Materials on Initial Strength of Adhesive Joints Between Al Alloy and Steels. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; pp. 9–18. [Google Scholar]
- Zhang, F.; Yang, X.; Wang, H.P.; Zhang, X.; Xia, Y.; Zhou, Q. Durability of Adhesively bonded Single Lap–Shear Joints in Accelerated Hygrothermal Exposure for Automotive Applications. Int. J. Adhes. Adhes. 2013, 44, 130–137. [Google Scholar] [CrossRef]
- Avendaño, R.; Carbas, R.J.C.; Marques, E.A.S.; Da Silva, L.F.M.; Fernandes, A.A. Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive. Compos. Struct. 2016, 152, 34–44. [Google Scholar] [CrossRef]
- Banea, M.D.; da Silva, L.F.M. The effect of temperature on the mechanical properties of adhesives for the automotive industry. J. Mater. Des. Appl. 2010, 224, 51–62. [Google Scholar] [CrossRef]
- Yao, M.; Zhu, D.; Yao, Y.; Zhang, H.; Mobasher, B. Experimental study on basalt FRP/steel single-lap joints under different loading rates and temperatures. Compos. Struct. 2016, 145, 68–79. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Yang, X.; Wei, K. Durability and mechanical behavior of CFRP/Al structural joints in accelerated cyclic corrosion environments. Int. J. Adhes. Adhes. 2020, 102, 102695. [Google Scholar] [CrossRef]
- Budhe, S.; Banea, M.D.; Barros, S.D.; Silva, L.F.M.D. An updated review of adhesively bonded joints in composite materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. [Google Scholar] [CrossRef]
- Gautier, L.; Mortaigne, B.; Bellenger, V. Interface damage study of hydrothermally aged glass-fibre-reinforced polyester composites. Compos. Sci. Technol. 1999, 59, 2329–2337. [Google Scholar] [CrossRef]
- Arun, K.V.; Basavarajappa, S.; Sherigare, B.S. Damage characterization of glass/textile fabric polymer hybrid composites in sea water environment. Mater. Des. 2010, 31, 930–939. [Google Scholar] [CrossRef]
- Regazzi, A.; Corn, S.; Ienny, P.; Benezet, J.-C.; Bergeret, A. Reversible and irreversible changes in physical and mechanical properties of bio-composites during hydrothermal aging. Ind. Crops Prod. 2016, 84, 358–365. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Richardon, M.O.W. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polymer composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Kaelble, D.H.; Dynes, P.J.; Crane, L.W. Interfacial mechanisms of moisture degradation in graphite-epoxy composites. J. Adhes. 1975, 7, 25–54. [Google Scholar] [CrossRef]
- Deneve, B.; Shanahan, M.E.R. Physical and chemical effects in an epoxy-resin exposed to water-vapor. J. Adhes. 1995, 49, 165–176. [Google Scholar] [CrossRef]
- Banea, M.D.; da Silva, L.F.M. Adhesively bonded joints in composite materials: An overview. J. Mater. Des. Appl. 2009, 223, 1–18. [Google Scholar] [CrossRef]
- Heshmati, M.; Haghani, R.; Al-Emrani, M. Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: State of the art. Compos. B Eng. 2015, 81, 259–275. [Google Scholar] [CrossRef]
- Cabral-Fonseca, S.; Correia, J.R.; Rodrigues, M.P.; Branco, F.A. Artificial accelerated ageing of GFRP pultruded profiles made of polyester and vinylester resins: Characterisation of physical-chemical and mechanical damage. Strain 2012, 48, 162–173. [Google Scholar] [CrossRef]
- Banea, M.D.; Silva, L.F.M.; Carbas, R.J.C.; Barbosa, A.Q.; De Barros, S.; Viana, G. Effect of water on the behavior of adhesives modified with thermally expandable particles. Int. J. Adhes. Adhes. 2018, 84, 250–256. [Google Scholar] [CrossRef]
- Li, S.; Guo, S.; Yao, Y.; Jin, Z.; Shi, C.; Zhu, D. The effects of aging in seawater and SWSSC and strain rate on the tensile performance of GFRP/BFRP composites: A critical review. Constr. Build. Mater. 2021, 282, 122534. [Google Scholar] [CrossRef]
- Zhang, Y.; Vassilopoulos, A.P.; Keller, T. Environmental effects on fatigue behavior of adhesively-bonded pultruded structural joints. Compos. Sci. Technol. 2009, 69, 1022–1028. [Google Scholar] [CrossRef]
- Kootsookos, A.; Mouritz, A.P. Seawater durability of glass- and carbon-polymer composites. Compos. Sci. Technol. 2004, 64, 1503–1511. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Degradation of basalt fiber and glass fiber/epoxy resin composites in seawater. Corros. Sci. 2011, 53, 426–431. [Google Scholar] [CrossRef]
- Mourad, A.H.I.; Idrisi, A.H.; Wrage, M.C.; Beckry, M.A. Long-term durability of thermoset composites in seawater environment. Compos. B Eng. 2019, 168, 243–253. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Wu, Z. Fatigue degradation and life prediction of basalt fiber-reinforced polymer composites after saltwater corrosion. Mater. Des. 2018, 76, 99–108. [Google Scholar] [CrossRef]
- Wang, Y.L.; Guo, X.Y.; Shu, S.Y.H.; Guo, Y.C.; Qin, X.M. Effect of salt solution wet-dry cycling on the bond behavior of FRP-concrete interface. Constr. Build. Mater. 2020, 254, 22–31. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Y.; Xie, J. Durability of BFRP bars wrapped in seawater sea sand concrete—Science Direct. Compos. Struct. 2020, 25, 22–28. [Google Scholar]
- Nian, X.I. Damage characterization and failure analysis in fifiber reinforced composites. J. Aeronaut. Mater. 2000, 20, 62–63. [Google Scholar]
- Li, J.; Yan, Y.; Zhang, T.; Liang, Z. Experimental study of adhesively bonded CFRP joints subjected to tensile loads. Int. J. Adhes. Adhes. 2015, 57, 95–104. [Google Scholar] [CrossRef]
- ASTM D5868-01 (2014); Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding. ASTM International: West Conshohocken, PA, USA, 2014.
- Zaeri, A.R.; Saeidi Googarchin, H. Experimental investigation on environmental degradation of automotive mixed-adhesive joints. Int. J. Adhes. Adhes. 2019, 39, 57–66. [Google Scholar] [CrossRef]
- Ekrem, M.; Avcı, A. Effects of polyvinyl alcohol nanofiber mats on the adhesion strength and fracture toughness of epoxy adhesive joints. Compos. Part B Eng. 2018, 138, 256–264. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Hosseini Abbandanak, S.N.; Eslami-Farsani, R.; Siadati, S.M.H. Effects of various aluminum surface treatments on the basalt fiber metal laminates interlaminar adhesion. Int. J. Adhes. Adhes. 2018, 84, 184–193. [Google Scholar] [CrossRef]
- Marques, G.P.; Campilho, R.D.S.G.; da Silva, F.J.G.; Moreira, R.D.F. Adhesive selection for hybrid spot-welded/bonded single-lap joints: Experimentation and numerical analysis. Compos. Part. B-Eng. 2016, 84, 248–257. [Google Scholar] [CrossRef]
- ISO 4587:2003; Adhesives-Determination of Tensile Lap-Shear Strength of Rigid-to-Rigid Bonded Assemblies. ISO: Geneva, Switzerland, 2003.
- Jadhav, N.R.; Gaikwad, V.L.; Nair, K.J.; Kadam, H.M. Glass transition temperature: Basics and application in pharmaceutical sector. Asian J. Pharm. 2009, 3, 82–89. [Google Scholar] [CrossRef]
- Mu, W.; Qin, G.; Na, J.; Tan, W.; Liu, H.; Luan, J. Effect of alternating load on the residual strength of environmentally aged adhesively bonded CFRP-aluminum alloy joints. Compos. Part B Eng. 2019, 168, 87–97. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X. Moisture sorption–desorption–resorption characteristics and its effect on the mechanical behavior of the epoxy system. Polymer 2005, 46, 11994–12003. [Google Scholar] [CrossRef]
- Ameli, A.; Datla, N.V.; Papini, M.; Spelt, J.K. Hygrothermal Properties of Highly Toughened Epoxy Adhesives. J. Adhes. 2010, 86, 698–725. [Google Scholar] [CrossRef]
- LaPlante, G.; Ouriadov, A.V.; Lee-Sullivan, P.; Balcom, B.J. Anomalous moisture diffusion in an epoxy adhesive detected by magnetic resonance imaging. J. Appl. Polym. Sci. 2008, 109, 1350–1359. [Google Scholar] [CrossRef]
- Han, X.; Pickering, E.; Bo, A.; Gu, Y. Characterisation on the hygrothermal degradation in the mechanical property of structural adhesive: A novel meso-scale approach. Compos. Part B Eng. 2020, 182, 107609. [Google Scholar] [CrossRef]
- Emara, M.; Torres, L.; Baena, M.; Barris, C.; Moawad, M. Effect of sustained loading and environmental conditions on the creep behavior of an epoxy adhesive for concrete structures strengthened with CFRP laminates. Compos. Part B Eng. 2017, 129, 88–96. [Google Scholar] [CrossRef]
- ASTM-D3418; Standard Test Methods of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 1999.
- Lin, Y.C.; Chen, X.; Zhang, H.J.; Wang, Z.P. Effects of hygrothermal aging on epoxy-based anisotropic conductive film. Mater. Lett. 2006, 60, 2958–2963. [Google Scholar] [CrossRef]
- Galvez, P.; Abenojar, J.; Martinez, M.A. Effect of moisture and temperature on the thermal and mechanical properties of a ductile epoxy adhesive for use in steel structures reinforced with CFRP. Composites 2019, 176, 107194.1–107194.11. [Google Scholar] [CrossRef]
- Vieira, P.; Souza, F.; Cardoso, D.; Vieira, J.D.; de Andrade Silva, F. Influence of moderate/high temperatures on the residual flexural behavior of pultruded GFRP. Compos. Part B Eng. 2020, 200, 108335. [Google Scholar] [CrossRef]
- Jiang, X.; Li, C.; Chi, Y.; Yan, J. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J. Hazard. Mater. 2010, 173, 205–210. [Google Scholar] [CrossRef]
- Adams, R.D.; Coppendale, J.; Mallick, V.; Al-Hamdan, H. The effffect of temperature on the strength of adhesive joints. Int. J. Adhes. Adhes. 1992, 12, 185–190. [Google Scholar] [CrossRef]
- Galvez, P.; Abenojar, J.; Martinez, M.A. Durability of steel-CFRP structural adhesive joints with polyurethane adhesives. Compos. B Eng. 2019, 165, 1–9. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Sonia, S.; Moumen, A.E.; Saifaoui, D. An investigation of hygrothermal aging effects on High Strain Rate Behaviour of Adhesively Bonded Composite Joints. Compos. Part. B Eng. 2019, 172, 111–120. [Google Scholar] [CrossRef]
- Fan, Y.; Na, J.; Mu, W.; Qin, G.; Tan, W. Effect of Hygrothermal Cycle Aging on the Mechanical Behavior of Single-lap Adhesive Bonded Joints. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2019, 34, 337–344. [Google Scholar] [CrossRef]
- Merdas, I.; Thominette, F.; Teharkhtchi, A.; Verdu, J. Factors governing water absorption by composite matrices. Compos. Sci. Technol. 2002, 62, 487–492. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, X.; Zhang, Q.; Zhang, J.; Bao, J.; Guo, X. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates. Compos. B Eng. 2016, 91, 431–440. [Google Scholar] [CrossRef]
ML-5417A /ML-5417B Epoxy Resin | Basalt Fiber Unidirectional Fabric | ||
---|---|---|---|
Cure condition | 25 °C × 24 h + 100 °C × 3 h | Surface Density/(g·cm−2) | 300 |
Tensile strength/(MPa) | 2100 | ||
Epoxy value/(g/ep) | 165–175 | Young's modulus/(GPa) | 105 |
25 °C Density/(g·cm−3) | 1.10–1.20 | Elongation/(%) | 2.6 |
Tensile modulus/(MPa) | 2800–3200 | Nominal thickness/(mm) | 0.115 |
Tg/(°C) | 110–125 | Single fiber size/(μm) | 13 |
Araldite®2011 | Araldite®2014 | |
---|---|---|
Young’s modulus, E (GPa) | 1.65 | 4 |
Shear modulus, G (GPa) | 0.2 | 1.2 |
Density (kg·m3) | 1.15 | 1.6 |
Poisson’s ratio | 0.43 | 0.33 |
Adhesive | Environment | Aging Time (Hours) | Primary Pyrolysis Initial Temperature (°C) | Maximum Weight Loss Rate Temperature (°C) | Residue Rate at 800 °C (%) |
---|---|---|---|---|---|
Araldite®2011 | Unaged | 0 | 251.6–513.3 | 430.8 | 1.36% |
3.5% NaCl | 240 | 260.8–521.6 | 425 | 5.35% | |
480 | 427.5 | 3.31% | |||
720 | 423.3 | 4.73% | |||
5% NaCl | 240 | 265.7–511.7 | 421.7 | 3.54% | |
480 | 424.1 | 3.51% | |||
720 | 422.5 | 2.15% | |||
Araldite®2014 | Unaged | 0 | 245.8–514.2 | 361.7 | 40.97% |
3.5% NaCl | 240 | 241.7–503.5 | 356.7 | 40.72% | |
480 | 360.8 | 41.01% | |||
720 | 362.5 | 39.11% | |||
5% NaCl | 240 | 240.8–501.7 | 359.1 | 41.08% | |
480 | 358.3 | 41.6% | |||
720 | 360.6 | 41.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Yang, Y.; Liu, Z.; Ding, Z.; Peng, H.; Fan, Y. Durability of Two Epoxy Adhesive BFRP Joints Dipped in Seawater under High Temperature Environment. Polymers 2023, 15, 3232. https://doi.org/10.3390/polym15153232
Niu R, Yang Y, Liu Z, Ding Z, Peng H, Fan Y. Durability of Two Epoxy Adhesive BFRP Joints Dipped in Seawater under High Temperature Environment. Polymers. 2023; 15(15):3232. https://doi.org/10.3390/polym15153232
Chicago/Turabian StyleNiu, Ruitao, Yang Yang, Zhen Liu, Ziyang Ding, Han Peng, and Yisa Fan. 2023. "Durability of Two Epoxy Adhesive BFRP Joints Dipped in Seawater under High Temperature Environment" Polymers 15, no. 15: 3232. https://doi.org/10.3390/polym15153232
APA StyleNiu, R., Yang, Y., Liu, Z., Ding, Z., Peng, H., & Fan, Y. (2023). Durability of Two Epoxy Adhesive BFRP Joints Dipped in Seawater under High Temperature Environment. Polymers, 15(15), 3232. https://doi.org/10.3390/polym15153232