Understanding the Effect of Grain Boundaries on the Mechanical Properties of Epoxy/Graphene Composites
Abstract
:1. Introduction
2. Computational Details
2.1. Atomistic Models
2.2. Simulation Methods
3. Results and Discussion
3.1. Tensile Behavior of Epoxy/Graphene Composites
3.2. Compressive Behavior of Epoxy/Graphene Composites
3.3. Glass Transition Temperature of Epoxy/Graphene Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, H.J.; Shao, Q.; Guo, X.K.; Galaska, A.; Liu, Y.Y.; Guo, Z.H. Separation and recovery of copper foil and fabric from waste printed circuit boards by decomposing brominated epoxy resin using near critical water. Eng. Sci. 2018, 1, 78–85. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhao, M.; Zhang, J.X.; Shao, Q.; Li, J.F.; Li, H.; Lin, B.; Yu, M.Y.; Chen, S.G.; Guo, Z.H. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride. J. Polym. Res. 2018, 25, 130. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Chen, C.; Xue, Z.; Xie, X.; Zhou, X.; Mai, Y.W. Effect of elastic modulus mismatch of epoxy/titanium dioxide coated silver nanowire composites on the performance of thermal conductivity. Compos. Sci. Technol. 2018, 165, 206–213. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Zhang, Y.; Liao, Y.; Zhou, H. Effect of defects on thermal conductivity of graphene/epoxy nanocomposites. Carbon 2018, 130, 295–303. [Google Scholar] [CrossRef]
- Shokuhfar, A.; Arab, B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: Molecular dynamics simulation. J. Mol. Model. 2013, 19, 3719–3731. [Google Scholar] [CrossRef] [PubMed]
- Aghadavoudi, F.; Golestanian, H.; Beni, Y.T. Investigating the effects of resin crosslinking ratio on mechanical properties of epoxy-based nanocomposites using molecular dynamics. Polym. Compos. 2017, 38, 433–442. [Google Scholar] [CrossRef]
- Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G.; Vahid, S. Improving the fracture toughness and the strength of epoxy using nanomaterials—A review of the current status. Nanoscale 2015, 7, 10294–10329. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, H.B.; Tambe, P.; Joshi, G.M. Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: A review. Compos. Interfaces 2018, 25, 381–414. [Google Scholar] [CrossRef]
- Rahman, A.; Deshpande, P.; Radue, M.S.; Odegard, G.M.; Gowtham, S.; Ghosh, S.; Spear, A.D. A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data. Compos. Sci. Technol. 2021, 207, 108627. [Google Scholar] [CrossRef]
- Jian, W.; Wang, X.; Lu, H.; Lau, D. Molecular dynamics simulations of thermodynamics and shape memory effect in CNT-epoxy nanocomposites. Compos. Sci. Technol. 2021, 211, 108849. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.C.; Wan, Y.J.; Yan, D.; Pei, Y.B.; Zhao, L.; Li, Y.B.; Wu, L.B.; Jiang, J.X.; Lai, G.Q. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 2013, 60, 16–27. [Google Scholar] [CrossRef]
- Xie, W.H.; Wei, Y.J. Roughening for strengthening and toughening in monolayer carbon based composites. Nano Lett. 2021, 21, 4823–4829. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef]
- Idowu, A.; Boesl, B.; Agarwal, A. 3D graphene foam-reinforced polymer composites—A review. Carbon 2018, 135, 52–71. [Google Scholar] [CrossRef]
- Shen, X.J.; Liu, Y.; Xiao, H.M.; Feng, Q.P.; Yu, Z.Z.; Fu, S.Y. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins. Compos. Sci. Technol. 2012, 72, 1581–1587. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lin, W.N.; Huang, Y.L.; Tien, H.W.; Wang, J.Y.; Ma, C.C.M.; Li, S.M.; Wang, Y.S. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011, 49, 793–803. [Google Scholar] [CrossRef]
- Saha, M.; Tambe, P.; Pal, S. Thermodynamic approach to enhance the dispersion of graphene in epoxy matrix and its effect on mechanical and thermal properties of epoxy nanocomposites. Compos. Interfaces 2016, 23, 255–272. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 2014, 97, 90–99. [Google Scholar] [CrossRef]
- Teng, C.C.; Ma, C.C.M.; Lu, C.H.; Yang, S.Y.; Lee, S.H.; Hsiao, M.C.; Yen, M.Y.; Chiou, K.C.; Lee, T.M. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 2011, 49, 5107–5116. [Google Scholar]
- Fu, Y.X.; He, Z.X.; Mo, D.C.; Lu, S.S. Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int. J. Therm. Sci. 2014, 86, 276–283. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Q.; Jie, W.S. A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations. Compos. Part B Eng. 2019, 160, 348–361. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Jia, Z.M.; Feng, X.P.; Zou, Y. Graphene nanoplatelets/epoxy composites with excellent shear properties for construction adhesives. Compos. Part B Eng. 2018, 152, 311–315. [Google Scholar] [CrossRef]
- Bian, P.L.; Verestek, W.; Yan, S.; Xu, X.; Qing, H.; Schmauder, S. A multiscale modeling on fracture and strength of graphene platelets reinforced epoxy. Eng. Fract. Mech. 2020, 235, 107197. [Google Scholar] [CrossRef]
- Sun, R.; Li, L.; Feng, C.; Kitipornchai, S.; Yang, J. Tensile property enhancement of defective graphene/epoxy nanocomposite by hydrogen functionalization. Compos. Struct. 2019, 224, 111079. [Google Scholar] [CrossRef]
- Biró, L.P.; Lambin, P. Grain boundaries in graphene grown by chemical vapor deposition. New J. Phys. 2013, 15, 035024. [Google Scholar] [CrossRef]
- Duong, D.L.; Han, G.H.; Lee, S.M.; Gunes, F.; Kim, E.S.; Kim, S.T.; Kim, H.; Ta, Q.H.; So, K.P.; Yoon, S.J.; et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhao, J.J.; Lu, J.P. Intrinsic strenth and failure behaviors of graphene grain boundaries. ACS Nano 2012, 6, 2704–2711. [Google Scholar] [CrossRef]
- Xu, N.; Guo, J.; Cui, Z. The influence of tilt grain boundaries on the mechanical properties of bicrystalline graphene nanoribbons. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 168–174. [Google Scholar] [CrossRef]
- Wei, Y.J.; Wu, J.T.; Yin, H.Q.; Shi, X.H.; Yang, R.G.; Dresselhaus, M. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 2012, 11, 759–763. [Google Scholar] [CrossRef]
- Grantab, R.; Shenoy, V.B.; Ruoff, R.S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330, 946–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.C.; Geng, D.C.; Liu, F.N.; Ding, F. Formation of twinned graphene polycrystals. Angew. Chem. Int. Ed. 2019, 58, 7723–7727. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Chen, P.; Zheng, B.; Deng, T.; Zhang, Y.; Liao, Y.; Zhou, H. Effect of stone-wales defect on mechanical properties of Gr/epoxy nanocomposites. Polymers 2019, 11, 1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Parashar, A.; Packirisamy, M. Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl. Surf. Sci. 2019, 470, 1085–1092. [Google Scholar] [CrossRef]
- Sahraei, A.A.; Mokarizadeh, A.H.; George, D.; Rodrigue, D.; Baniassadi, M.; Foroutan, M. Insights into interphase thickness characterization for graphene/epoxy nanocomposites: A molecular dynamics simulation. Phys. Chem. Chem. Phys. 2019, 21, 19890–19903. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook, 4th ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Mumby, S.J.; Maple, J.R.; Hagler, A.T. An ab Initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 1994, 116, 2978–2987. [Google Scholar] [CrossRef]
- Wei, J.; Denvid, L. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level. Compos. Sci. Technol. 2020, 191, 108076. [Google Scholar]
- Li, M.Y.; Zhou, H.; Zhang, Y.; Liao, Y.G.; Zhou, H.M. The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Adv. 2017, 7, 46101–46108. [Google Scholar] [CrossRef] [Green Version]
- Tam, L.H.; Lau, D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials. RSC Adv. 2014, 4, 33074–33081. [Google Scholar] [CrossRef]
- Fankhänel, J.; Arash, B.; Rolfes, R. Elastic interphase properties of nanoparticle/epoxy nanocomposites: A molecular dynamics study. Compos. Part B Eng. 2019, 176, 107211. [Google Scholar]
- Meng, F.; Chen, C.; Song, J. Lattice trapping and crack decohesion in graphene. Carbon 2017, 116, 33–39. [Google Scholar] [CrossRef]
- Tamrakar, S.; Ganesh, R.; Sockalingam, S.; Haque, B.Z.; Gillespie, J.W. Experimental investigation of strain rate and temperature dependent response of an epoxy resin undergoing large deformation. J. Dyn. Behav. Mater. 2018, 4, 114–128. [Google Scholar] [CrossRef]
- Elder, R.M.; Knorr, J.D.B.; Andzelm, J.W.; Lenhart, J.L.; Sirk, T.W. Nanovoid formation and mechanics: A comparison of poly(dicyclopentadiene) and epoxy networks from molecular dynamics simulations. Soft Matter 2016, 12, 4418–4434. [Google Scholar] [CrossRef]
- Chowdhury, S.C.; Elder, R.M.; Sirk, T.W.; Gillespie, J.W. Epoxy resin thermo-mechanics and failure modes: Effects of cure and cross-linker length. Compos. Part B Eng. 2020, 186, 107814. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Kudus, M.H.A.; Akil, H.M.; Thirmizir, M.Z.M. Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos. Part B Eng. 2017, 119, 57–66. [Google Scholar] [CrossRef]
- Yu, H.P.; Tong, Z.H.; Chen, P.; Cai, A.W.; Qin, F. Effects of different parameters on thermal and mechanical properties of aminated graphene/epoxy nanocomposites connected by covalent: A molecular dynamics study. Curr. Appl. Phys. 2020, 20, 510–518. [Google Scholar] [CrossRef]
- Moeini, M.; Isfahani, R.B.; Saber-Samandari, S.; Aghdam, M.M. Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene-epoxy nanocomposites. Mol. Simul. 2020, 46, 476–486. [Google Scholar] [CrossRef]
- Zheng, Q.; Xue, Q.; Yan, K.; Gao, X.; Li, Q.; Hao, L. Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites. Polymer 2008, 49, 800–808. [Google Scholar] [CrossRef]
- Hasheminejad, K.; Montazeri, A. Enhanced interfacial characteristics in PLA/graphene composites through numerically-designed interface treatment. Appl. Surf. Sci. 2020, 502, 144150. [Google Scholar] [CrossRef]
- Ding, Q.Y.; Ding, N.; Liu, L.; Li, N.; Wu, C.-M.L. Investigation on mechanical performances of grain boundaries in hexagonal boron nitride sheets. Int. J. Mech. Sci. 2018, 149, 262–272. [Google Scholar] [CrossRef]
- Fan, J.; Anastassiou, A.; Macosko, C.W.; Tadmor, E.B. Molecular dynamics predictions of thermomechanical properties of an epoxy thermosetting polymer. Polymer 2020, 196, 122477. [Google Scholar] [CrossRef]
- Hale, A.; Macosko, C.W.; Bair, H.E. Glass transition temperature as a function of conversion in thermosetting polymers. Macromolecules 1991, 24, 2610–2621. [Google Scholar] [CrossRef]
- Schichtel, J.J.; Chattopadhyay, A. Modeling thermoset polymers using an improved molecular dynamics crosslinking methodology. Comp. Mater. Sci. 2020, 174, 109469. [Google Scholar] [CrossRef]
- Ji, W.M.; Zhang, L.W.; Liew, K.M. Understanding interfacial interaction characteristics of carbon nitride reinforced epoxy composites from atomistic insights. Carbon 2021, 171, 45–54. [Google Scholar] [CrossRef]
Configurations | Parallel to Graphene | Perpendicular to Graphene | Parallel to Graphene | Perpendicular to Graphene | Tg (K) | Interaction Energy {Kcal/mol} | Inflection Angle θ | Tensile Strength of Graphene Sheet {GPa} | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tensile Yield Strength {MPa} | Young’s Modulus {GPa} | Tensile Yield Strength {MPa} | Young’s Modulus {GPa} | Compressive Yield Strength {MPa} | Compressive Modulus {GPa} | Compressive Yield Strength {MPa} | Compressive Modulus {GPa} | |||||
Epoxy/ZZ GRP | 188.07 ± 2.65 | 2.36 ± 0.31 | 160.56 ± 4.45 | 2.25 ± 0.04 | 290.96 ± 4.29 | 2.58 ± 0.06 | 262.62 ± 5.61 | 1.72 ± 0.20 | 422.8 | −1044.32 | 14 | 146.29 |
Epoxy/AM GRP | 158.76 ± 5.18 | 2.48 ± 0.46 | 160.56 ± 4.45 | 2.25 ± 0.04 | 256.62 ± 2.13 | 3.19 ± 0.23 | 262.62 ± 5.61 | 1.72 ± 0.20 | 126.67 | |||
Epoxy/ZZ 27.8 | 145.26 ± 2.34 | 2.61 ± 0.17 | 174.32 ± 5.87 | 1.51 ± 0.31 | 246.54 ± 3.31 | 2.94 ± 0.11 | 231.94 ± 5.19 | 2.78 ± 0.25 | 423.7 | −992.78 | 20 | 127.39 |
Epoxy/ZZ 21.8 | 194.23 ± 6.40 | 2.65 ± 0.19 | 194.27 ± 7.16 | 2.22 ± 0.27 | 296.85 ± 6.43 | 3.15 ± 0.20 | 314.83 ± 3.18 | 2.98 ± 0.43 | 427.2 | −1026.56 | 46 | 130.01 |
Epoxy/ZZ 13.2 | 191.81 ± 4.11 | 1.90 ± 0.15 | 175.30 ± 6.98 | 2.45 ± 0.35 | 311.18 ± 6.80 | 2.67 ± 0.16 | 239.75 ± 4.00 | 2.76 ± 0.25 | 437.9 | −1041.51 | 48 | 122.04 |
Epoxy/ZZ 9.4 | 207.58 ± 4.00 | 2.58 ± 0.12 | 220.62 ± 5.30 | 2.23 ± 0.17 | 320.95 ± 4.16 | 3.92 ± 0.27 | 334.13 ± 4.51 | 2.91 ± 0.27 | 462.1 | −1044.55 | 41 | 122.86 |
Epoxy/ZZ 8.9 | 178.58 ± 2.51 | 2.02 ± 0.06 | 165.85 ± 1.09 | 2.46 ± 0.53 | 300.74 ± 7.75 | 3.39 ± 0.52 | 283.99 ± 5.32 | 3.05 ± 0.14 | 456.2 | −1013.91 | 25 | 119.98 |
Epoxy/AM 27.8 | 159.29 ± 7.49 | 1.91 ± 0.15 | 209.47 ± 4.20 | 1.88 ± 0.11 | 277.94 ± 4.54 | 2.34 ± 0.14 | 265.35 ± 3.23 | 2.74 ± 0.16 | 409.9 | −1018.11 | 15 | 127.67 |
Epoxy/AM 21.8 | 226.47 ± 1.86 | 2.45 ± 0.35 | 216.36 ± 3.86 | 2.63 ± 0.30 | 291.25 ± 2.31 | 3.96 ± 0.12 | 272.67 ± 3.51 | 3.47 ± 0.18 | 427.2 | −1017.33 | 35 | 118.96 |
Epoxy/AM 17.9 | 161.20 ± 2.78 | 2.16 ± 0.09 | 176.53 ± 2.61 | 2.24 ± 0.07 | 259.33 ± 2.13 | 2.25 ± 0.52 | 277.71 ± 1.35 | 2.46 ± 0.17 | 428.7 | −998.02 | 60 | 109.85 |
Epoxy/AM 15.2 | 163.78 ± 7.19 | 1.98 ± 0.08 | 154.14 ± 3.24 | 1.99 ± 0.18 | 251.21 ± 6.74 | 3.08 ± 0.42 | 252.02 ± 4.30 | 2.43 ± 0.13 | 455.6 | −1002.46 | 52 | 115.52 |
Epoxy/AM 13.2 | 135.91 ± 7.91 | 2.86 ± 0.70 | 183.28 ± 3.79 | 2.84 ± 0.36 | 286.21 ± 2.59 | 2.42 ± 0.16 | 282.26 ± 5.55 | 3.76 ± 0.27 | 455.9 | −1038.25 | 62 | 95.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Q.; Ding, N.; Chen, X.; Guo, W.; Zaïri, F. Understanding the Effect of Grain Boundaries on the Mechanical Properties of Epoxy/Graphene Composites. Polymers 2023, 15, 3218. https://doi.org/10.3390/polym15153218
Ding Q, Ding N, Chen X, Guo W, Zaïri F. Understanding the Effect of Grain Boundaries on the Mechanical Properties of Epoxy/Graphene Composites. Polymers. 2023; 15(15):3218. https://doi.org/10.3390/polym15153218
Chicago/Turabian StyleDing, Qiuyue, Ning Ding, Xiangfeng Chen, Wenyue Guo, and Fahmi Zaïri. 2023. "Understanding the Effect of Grain Boundaries on the Mechanical Properties of Epoxy/Graphene Composites" Polymers 15, no. 15: 3218. https://doi.org/10.3390/polym15153218
APA StyleDing, Q., Ding, N., Chen, X., Guo, W., & Zaïri, F. (2023). Understanding the Effect of Grain Boundaries on the Mechanical Properties of Epoxy/Graphene Composites. Polymers, 15(15), 3218. https://doi.org/10.3390/polym15153218