Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Cellulose from Sugarcane Bagasse
2.3. Extraction of Cellulose from Rice Straw
2.4. Preparation of the Cellulose Films
2.5. Preparation of the Cellulose Particles
2.6. Characterization of the Films
3. Results and Discussion
3.1. Extraction Yield of Cellulose
3.2. Transparency and Mechanical Properties of the Films
3.3. Morphological Observation
3.4. FTIR Analysis
3.5. Thermal Stability
3.6. Water Susceptibility
3.7. Morphological Observation of Particles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.-J.; Roy, S.; Rhim, J.-W. Effects of Various Types of Cellulose Nanofibers on the Physical Properties of the CNF-Based Films. J. Environ. Chem. Eng. 2021, 9, 106043. [Google Scholar] [CrossRef]
- Cao, J.; Sun, X.; Lu, C.; Zhou, Z.; Zhang, X.; Yuan, G. Water-Soluble Cellulose Acetate from Waste Cotton Fabrics and the Aqueous Processing of all-Cellulose Composites. Carbohyd. Polym. 2016, 149, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Jonoobi, M.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different Preparation Methods and Properties of Nanostructured Cellulose from Various Natural Resources and Residues: A Review. Cellulose 2015, 22, 935–969. [Google Scholar] [CrossRef]
- Tarabanko, N.; Baryshnikov, S.V.; Kazachenko, A.S.; Miroshnikova, A.; Skripnikov, A.M.; Lavrenov, A.V.; Taran, O.; Kuznetsov, B.N. Hydrothermal Hydrolysis of Microcrystalline Cellulose from Birch Wood Catalyzed by Al2O3-B2O3 Mixed Oxides. Wood Sci. Technol. 2022, 56, 437–457. [Google Scholar] [CrossRef]
- Yu, Z.; Dhital, R.; Wang, W.; Sun, L.; Zeng, W.; Mustapha, A.; Lin, M. Development of Multifunctional Nanocomposites Containing Cellulose Nanofibrils and Soy Proteins as Food Packaging Materials. Food Packag. Shelf Life 2019, 21, 100366. [Google Scholar] [CrossRef]
- Rajeswari, A.; Jackcina Stobel Christy, E.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. J. Environ. Chem. Ecotoxicol. 2020, 2, 107–114. [Google Scholar] [CrossRef]
- Filippo, M.F.D.; Dolci, L.S.; Liccardo, L.; Bigi, A.; Bonvicini, F.; Gentilomi, G.A.; Passerini, N.; Panzavolta, S.; Albertini, B. Cellulose Derivatives-Snail Slime Films: New Disposable Eco-Friendly Materials for Food Packaging. Food Hydrocoll. 2021, 111, 106247. [Google Scholar]
- Liu, Y.; Ahmed, S.; Sameen, D.E.; Wang, Y.; Lu, R.; Dai, J.W.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends Food Sci. Technol. 2021, 112, 532–546. [Google Scholar] [CrossRef]
- Baghaei, B.; Mikael Skrifvars, M. All-Aellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules 2020, 25, 2836. [Google Scholar] [CrossRef]
- Xie, X.; Liu, L.; Zhang, L.; Lu, A. Strong Cellulose Hydrogel as Underwater Superoleophobic Coating for Efficient Oil/Water Separation. Carbohyd. Polym. 2020, 229, 115467. [Google Scholar] [CrossRef]
- Huang, M.; Tang, Y.; Wang, X.; Zhu, P.; Chen, T.; Zhou, Y. Preparation of Polyaniline/Cellulose Nanocrystal Composite and Its Application in Surface Coating of Cellulosic Paper. Prog. Org. Coat. 2021, 159, 106452. [Google Scholar] [CrossRef]
- Jiang, Z.; Ho, S.-H.; Wang, X.; Li, Y.; Wang, C. Application of Biodegradable Cellulose-Based Biomass Materials in Wastewater Treatment. Environ. Pollut. 2021, 290, 118087. [Google Scholar] [CrossRef]
- Lee, K.; Jeon, Y.; Kim, D.; Kwon, G.; Kim, U.-J.; Hong, C.; Choung, J.W.; You, J. Double-Crosslinked Cellulose Nanofiber-Based Bioplastic Films for Practical Applications. Carbohyd. Polym. 2021, 260, 117817. [Google Scholar] [CrossRef]
- Moura, M.R.; Avena-Bustillos, R.J.; McHugh, T.H.; Wood, D.F.; Otoni, C.G.; Mattoso, L.H.C. Miniaturization of Cellulose Fibers and Effect of Addition on the Mechanical and Barrier Properties of Hydroxypropyl Methylcellulose Films. Food Eng. 2011, 104, 54–60. [Google Scholar] [CrossRef]
- Ng, H.-M.; Sin, L.T.; Tee, T.-T.; Bee, S.-T.; Hui, D.; Low, C.-Y.; Rahmat, A.R. Extraction of Cellulose Nanocrystals from Plant Sources for Application as Reinforcing Agent in Polymers. Compos. B 2015, 75, 176–200. [Google Scholar] [CrossRef]
- Hu, L.; Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Zhang, X.; Si, C.; Li, B.; Peng, H. Comparative Evaluation of the Efficient Conversion of Corn Husk Filament and Corn Husk Powder to Valuable Materials via a Sustainable and Clean Biorefinery Process. ACS Sustain. Chem. Eng. 2019, 7, 1327–1336. [Google Scholar] [CrossRef]
- Du, H.; Parit, M.; Wu, M.; Che, X.; Wang, Y.; Zhang, M.; Jiang, Z.; Li, B. Sustainable Valorization of Paper Mill Sludge into Cellulose Nanofibrils and Cellulose Nanopaper. J. Hazard. Mater. 2020, 400, 123106. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y. Optimization of Bleaching Process for Cellulose Extraction from Apple and Kale Pomace and Evaluation of their Potentials as Film Forming Materials. Carbohyd. Polym. 2021, 253, 117225. [Google Scholar] [CrossRef]
- Wulandari, W.T.; Rochliadi, A.; Arcana, I.M. Nanocellulose Prepared by Acid Hydrolysis of Isolated Cellulose from Sugarcane Bagasse. Mater. Sci. Eng. 2016, 107, 012045. [Google Scholar] [CrossRef]
- Thiangtham, S.; Runt, J.; Manuspiya, H. Sulfonation of Dialdehyde Cellulose Extracted from Sugarcane Bagasse for Synergistically Enhanced Water Solubility. Carbohyd. Polym. 2019, 208, 314–322. [Google Scholar] [CrossRef]
- Sankhla, S.; Sardar, H.H.; Neogi, S. Greener Extraction of Highly Crystalline and Thermally Stable Cellulose Micro-Fibers from Sugarcane Bagasse for Cellulose Nano-Fibrils Preparation. Carbohyd. Polym. 2021, 251, 117030. [Google Scholar] [CrossRef]
- Martinez-Sanz, M.; Vicente, A.A.; Gontard, N.; Lopez-Rubio, A.; Lagaron, J.M. On the Extraction of Cellulose Nanowhiskers from Food By-Products and their Comparative Reinforcing Effect on a Polyhydroxybutyrate-co-Valerate Polymer. Cellulose 2015, 22, 535–551. [Google Scholar] [CrossRef]
- Bian, H.; Gao, Y.; Luo, J.; Jiao, L.; Wu, W.; Fang, G.; Dai, H. Lignocellulosic Nanofibrils Produced Using Wheat Straw and their Pulping Solid Residue: From Agricultural Waste to Cellulose Nanomaterials. Waste Manag. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Qu, R.; Tang, M.; Wang, Y.; Wang, L. TEMPO-Oxidized Cellulose Fibers from Wheat Straw: Effect of Ultrasonic Pretreatment and Concentration on Structure and Rheological Properties of Suspensions. Carbohyd. Polym. 2021, 255, 117386. [Google Scholar] [CrossRef]
- Hu, S.; Jin Gu, J.; Jiang, F.; You-Lo Hsieh, Y.-L. Holistic Rice Straw Nanocellulose and Hemicelluloses/Lignin Composite Films. ACS Sustain. Chem. Eng. 2016, 4, 728–737. [Google Scholar] [CrossRef]
- Thakur, M.; Sharma, A.; Ahlawat, V.; Bhattacharya, M.; Goswami, S. Process Optimization for the Production of Cellulose Nanocrystals from Rice Straw Derived α-Cellulose. Mater. Sci. Energy Technol. 2020, 3, 328–334. [Google Scholar] [CrossRef]
- Binod, P.; Sindhu, R.; Singhania, R.R.; Vikram, S.; Devi, L.; Nagalakshmi, S.; Kurien, N.; Sukumaran, R.K.; Pandey, A. Bioethanol Production from Rice Straw: An Overview. Bioresour. Technol. 2010, 101, 4767–4774. [Google Scholar] [CrossRef]
- Hessien, M.M.; Rashad, M.M.; Zaky, R.R.; Abdel-Aal, E.A.; El-Barawy, K.A. Controlling the Synthesis Conditions for Silica Nanosphere from Semi-Burned Rice Straw. Mater. Sci. Eng. B 2009, 162, 14–21. [Google Scholar] [CrossRef]
- Lu, P.; Hsieh, Y.-L. Preparation and Characterization of Cellulose Nanocrystals from Rice Straw. Carbohyd. Polym. 2012, 87, 564–573. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Kahagh, S.A.; Vatankhah, E. Environmentally Friendly Superabsorbent Fibers Based on Electrospun Cellulose Nanofibers Extracted from Wheat Straw. Carbohyd. Polym. 2021, 251, 117087. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, X.; Sun, K. Rice Straw Cellulose Nanofibrils Reinforced Poly(Vinyl Alcohol) Composite Films. Carbohyd. Polym. 2018, 197, 442–450. [Google Scholar] [CrossRef]
- Do Lago, R.C.; de Oliveira, A.L.M.; Dias, M.C.; de Carvalho, E.E.N.; Tonoli, G.H.D.; de Barros Vilas Boas, E.V. Obtaining Cellulosic Nanofibrils from Oat Straw for Biocomposite Reinforcement: Mechanical and Barrier Properties. Ind. Crops Prod. 2020, 148, 112264. [Google Scholar] [CrossRef]
- Miao, X.; Lin, J.; Bian, F. Utilization of Discarded Crop Straw to Produce Cellulose Nanofibrils and their Assemblies. J. Biores. Bioprod. 2020, 5, 26–36. [Google Scholar] [CrossRef]
- Ortiz, P.S.; de Oliveira, S. Exergy Analysis of Pretreatment Processes of Bioethanol Production Based on Sugarcane Bagasse. Energy 2014, 76, 130–138. [Google Scholar] [CrossRef]
- Mandal, A.; Chakrabarty, D. Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and Its Characterization. Carbohyd. Polym. 2011, 86, 1291–1299. [Google Scholar] [CrossRef]
- Sun, J.X.; Sun, X.F.; Zhao, H.; Sun, R.C. Isolation and Characterization of Cellulose from Sugarcane Bagasse. Polym. Degrad. Stab. 2004, 84, 331–339. [Google Scholar] [CrossRef]
- Qi, Y.; Lin, S.; Lan, J.; Zhan, Y.; Guo, J. Fabrication of Super-High Transparent Cellulose Films with Multifunctional Performances via Post-Modification Strategy. Carbohyd. Polym. 2021, 260, 117760. [Google Scholar] [CrossRef]
- Azmin, S.N.H.M.; Hayat, N.A.b.M.; Nor, M.S.M. Development and Characterization of Food Packaging Bioplastic Film from Cocoa Pod Husk Cellulose Incorporated with Sugarcane Bagasse Fibre. J. Biores. Bioprod. 2020, 5, 248–255. [Google Scholar] [CrossRef]
- Cheerarot, O.; Baimark, Y. Biodegradable Silk Fibroin/Chitosan Blend Microparticles Prepared by Emulsification Diffusion Method. e-Polymers 2015, 15, 67–74. [Google Scholar] [CrossRef]
- Baimark, Y.; Niamsa, N.; Morakot, N.; Threeprom, J.; Srisuwan, Y. Preparation and Morphology Study of Biodegradable Chitosan/Methoxy Poly(Ethylene Glycol)-b-Poly(ε-Caprolactone) Nanocomposite Films. Int. J. Polym. Anal. Charact. 2007, 12, 457–467. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Nilsson, K.; Trifol, J.; Langton, M.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D.; Moriana, R. Faba Bean Protein Films Reinforced with Cellulose Nanocrystals as Edible Food Packaging Material. Food Hydrocoll. 2021, 121, 107019. [Google Scholar] [CrossRef]
- Chen, Y.W.; Lee, H.V. Revalorization of Selected Municipal Solid Wastes as New Precursors of “Green” Nanocellulose via a Novel One-Pot Isolation System: A Source Perspective. Int. J. Biol. Macromol. 2018, 107, 78–92. [Google Scholar] [CrossRef]
- Gomes, V.; Pires, A.S.; Mateus, N.; Freitas, V.; Cruz, L. Pyranoflavylium-Cellulose Acetate Films and the Glycerol Effect towards the Development of pH-Freshness Smart Label for Food Packaging. Food Hydrocoll. 2022, 127, 107501. [Google Scholar] [CrossRef]
- Csiszár, E.; Nagy, S. A Comparative Study on Cellulose Nanocrystals Extracted from Bleached Cotton and Flax and Used for Casting Films with Glycerol and Sorbitol Plasticizers. Carbohyd. Polym. 2017, 174, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Lyu, X.; Lee, J.; Cui, X.; Chen, W.-N. Biodegradable and Transparent Cellulose Film Prepared Eco-Friendly from Durian Rind for Packaging Application. Food Packag. Shelf Life 2019, 21, 100345. [Google Scholar] [CrossRef]
- Candido, R.G.; Gonçalves, A.R. Evaluation of Two Different Applications for Cellulose Isolated from Sugarcane Bagasse in a Biorefinery Concept. Ind. Crops Prod. 2019, 142, 111616. [Google Scholar] [CrossRef]
- Biswas, S.; Rahaman, T.; Gupta, P.; Mitra, R.; Dutta, S.; Kharlyngdoh, E.; Guha, S.; Ganguly, J.; Pal, A.; Das, M. Cellulose and Lignin Profiling in Seven, Economically Important Bamboo Species of India by Anatomical, Biochemical, FTIR Spectroscopy and Thermogravimetric Analysis. Biomass Bioenerg. 2022, 158, 106362. [Google Scholar] [CrossRef]
- Lassoued, M.; Crispino, F.; Loranger, E. Design and Synthesis of Transparent and Flexible Nanofibrillated Cellulose Films to Replace Petroleum-Based Polymers. Carbohyd. Polym. 2021, 254, 117411. [Google Scholar] [CrossRef]
- Shabanpour, B.; Kazemi, M.; Ojagh, S.M.; Pourashouri, P. Bacterial Cellulose Nanofibers as Reinforce in Edible Fish Myofibrillar Protein Nanocomposite Film. Int. J. Biol. Macromol. 2018, 117, 742–751. [Google Scholar] [CrossRef]
- Sogut, E. Active Whey Protein Isolate Films Including Bergamot Oil Emulsion Stabilized by Nanocellulose. Food Packag. Shelf Life 2020, 23, 100430. [Google Scholar] [CrossRef]
- Sukyai, P.; Anongjanya, P.; Bunyahwuthakul, N.; Kongsin, K.; Harnkarnsujarit, N.; Sukatta, U.; Sothornvit, R.; Chollaku, R. Effect of Cellulose Nanocrystals from Sugarcane Bagasse on Whey Protein Isolate-Based Films. Food Res. Int. 2018, 107, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Ilangovan, M.; Guna, V.; Prajwalb, B.; Jiangd, Q.; Reddy, N. Extraction and Characterisation of Natural Cellulose Fibers from Kigelia Africana. Carbohydr. Polym. 2020, 236, 115996. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Bian, H.; Yelle, D.J.; Ago, M.; Vajanto, K.; Vuorinen, T.; Zhu, J. Lignin Containing Cellulose Nanofibril Production from Willow Bark at 80 °C Using a Highly Recyclable Acid Hydrotrope. Ind. Crops Prod. 2019, 129, 15–23. [Google Scholar] [CrossRef]
- Osorio-Ruiz, A.; Avena-Bustillos, R.J.; Chiou, B.-S.; Rodríguez-Gonzalez, F.; Martinez Ayala, A.-L. Mechanical and Thermal Behavior of Canola Protein Isolate Films as Improved by Cellulose Nanocrystals. ACS Omega 2019, 4, 19172–19176. [Google Scholar] [CrossRef]
- Kathirselvam, M.; Kumaravel, A.; Arthanarieswaran, V.P.; Saravanakumar, S.S. Characterization of Cellulose Fibers in Thespesia populnea Barks: Influence of Alkali Treatment. Carbohyd. Polym. 2019, 217, 178–189. [Google Scholar] [CrossRef]
- Rémy, N.B.; Lucien, M.; Pierre, O.; Fabien, B.E.; Marcel, N.P.; Jean, A.A. Physico-Chemical and Thermal Characterization of a Lignocellulosic Fiber, Extracted from the Bast of Cola lepidota Stem. J. Miner. Mater. Charact. Eng. 2020, 8, 377–392. [Google Scholar] [CrossRef]
- Almazrouei, M.; Janajreh, I. Model-Fitting Approach to Kinetic Analysis of Non-Isothermal Pyrolysis of Pure and Crude Glycerol. Renew. Energy 2020, 145, 1693–1708. [Google Scholar] [CrossRef]
- Gonçalves, S.M.; Dos Santos, D.C.; Motta, J.F.G.; Dos Santos, R.R.; Chávez, D.W.H.; de Melo, N.R. Structure and Functional Properties of Cellulose Acetate Films Incorporated with Glycerol. Carbohyd. Polym. 2019, 209, 190–197. [Google Scholar] [CrossRef]
- Teixeira, S.C.; Silva, R.R.A.; de Oliveira, T.V.; Stringheta, P.C.; Pinto, M.R.M.R.; Soares, N.D.F.F. Glycerol and Triethyl Citrate Plasticizer Effects on Molecular, Thermal, Mechanical, and Barrier Properties of Cellulose Acetate Films. Food Biosci. 2021, 42, 101202. [Google Scholar] [CrossRef]
- Figueiredo, L.R.F.; Nepomuceno, N.C.; Melo, J.D.D.; Medeiros, E.S. Glycerol-Based Polymer Adhesives Reinforced with Cellulose Nanocrystals. Int. J. Adhes. Adhes. 2021, 110, 102935. [Google Scholar] [CrossRef]
- Hidayati, S.; Zulferiyenni; Maulidia, U.; Satyajaya, W.; Hadi, S. Effect of Glycerol Concentration and Carboxy Methyl Cellulose on Biodegradable Film Characteristics of Seaweed Waste. Heliyon 2021, 7, e077. [Google Scholar] [CrossRef] [PubMed]
- Yusefi, M.; Soon, M.L.-K.; Teow, S.-Y.; Monchouguy, E.I.; Neerooa, B.N.H.M.; Izadiyan, Z.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T.J.; Shameli, K. Fabrication of Cellulose Nanocrystals as Potential Anticancer Drug Delivery Systems for Colorectal Cancer Treatment. Int. J. Biol. Macromol. 2022, 199, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Manjusha, V.; Chithra Sekhar, V. A New Biodegradable Nano Cellulose-Based Drug Delivery System for pH-Controlled Delivery of Curcumin. Int. J. Biol. Macromol. 2021, 183, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Karimian, A.; Parsian, H.; Majidinia, M.; Rahimi, M.; Mir, S.M.; Kafil, H.S.; Shafiei-Irannejad, V.; Kheyrollah, M.; Ostadi, H.; Yousefi, B. Nanocrystalline Cellulose: Preparation, Physicochemical Properties, and Applications in Drug Delivery Systems. Int. J. Biol. Macromol. 2019, 133, 850. [Google Scholar] [CrossRef] [PubMed]
Samples | T660 (%) | Moisture Content (%) | Water Susceptibility (%) |
---|---|---|---|
SBG Native film SBG + glycerol | 91.53 ± 0.42 | 4.43 ± 0.31 | 8 ± 0.13 |
79.70 ± 1.71 | 6.27 ± 0.39 | 32 ± 0.25 | |
RS Native film RS + glycerol | 97.30 ± 3.48 | 14.49 ± 2.76 | 15 ± 0.45 |
91.83 ± 3.64 | 15.80 ± 1.38 | 40 ± 0.67 |
Samples | Force @ Peak (N) | Tensile Stress (MPa) | Elongation @ Break (%) | Young’s Modulus (MPa) |
---|---|---|---|---|
SBG | 15.05 | 3.29 | 2.47 | 19.23 |
SBG/Glycerol | 17.47 | 3.10 | 2.70 | 16.22 |
RS | 16.61 | 3.81 | 1.80 | 21.58 |
RS/Glycerol | 15.70 | 3.64 | 2.23 | 19.86 |
Maximum | 17.47 | 3.81 | 2.80 | 21.86 |
Minimum | 15.05 | 3.10 | 2.47 | 16.58 |
Mean | 16.21 | 3.46 | 2.62 | 19.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongsomboon, W.; Baimark, Y.; Srihanam, P. Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw. Polymers 2023, 15, 3190. https://doi.org/10.3390/polym15153190
Thongsomboon W, Baimark Y, Srihanam P. Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw. Polymers. 2023; 15(15):3190. https://doi.org/10.3390/polym15153190
Chicago/Turabian StyleThongsomboon, Wiriya, Yodthong Baimark, and Prasong Srihanam. 2023. "Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw" Polymers 15, no. 15: 3190. https://doi.org/10.3390/polym15153190
APA StyleThongsomboon, W., Baimark, Y., & Srihanam, P. (2023). Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw. Polymers, 15(15), 3190. https://doi.org/10.3390/polym15153190