Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of Polymeric Fibers
2.3. Grafting of Acrylic Acid (AA) on PSf Fibers
2.4. Pb(II) Preconcentration with PSf-AA Fibers
2.4.1. Pb(II) Extraction Process
2.4.2. Effect of Interferents on Pb(II) Extraction
2.4.3. Re-Extraction of Pb(II)
2.4.4. Preconcentration Process
2.5. Application of PSf-AA
3. Results and Discussion
3.1. Elaboration of PSf Polymeric Fibers
3.2. Modification of Fibers (Grafting) with AA (PSf-AA)
3.3. Fiber Characterization
3.4. Preconcentration of Pb(II) with PSf-AA Fibers
3.4.1. Pb(II) Extraction Process
3.4.2. Effect of Interferents on Pb(II) Extraction
3.4.3. Re-Extraction of Pb(II)
3.4.4. Preconcentration Process
3.5. Application of PSf-AA Fibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency (EPA). Learn about Lead. Available online: https://www.epa.gov/lead/learn-about-lead (accessed on 12 June 2023).
- Centers for Disease Control and Prevention (CDC). Lead in Drinking Water. Available online: https://www.cdc.gov/nceh/lead/prevention/sources/water.htm#:~:text=The%20most%20common%20sources%20of,the%20home%20may%20contain%20lead (accessed on 12 June 2023).
- Tamayo-Ortiz, M.; Navia-Antezana, J. Reduced lead exposure following a sensitization program in rural family homes producing traditional mexican ceramics. Ann. Glob. Health 2018, 84, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Ruiz, A.; Tristán-López, L.A.; Medrano-Gómez, K.I.; Torres-Domínguez, J.A.; Ríos, C.; Montes, S. Glazed clay pottery and lead exposure in Mexico: Current experimental evidence. Nutr. Neurosci. 2016, 20, 513–518. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Code of Federal Regulations. Title 40. Chapter I. Subchapter D. Part 141. Subpart I. Control of Lead and Copper. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-141/subpart-I (accessed on 12 June 2023).
- Official Journal of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 12 June 2023).
- United States Environmental Protection Agency (EPA). Code of Federal Regulations. Title 40. Chapter I. Subchapter D. Part 141. Subpart I. 141.23 Inorganic Chemical Sampling and Analytical Requirements. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-141/subpart-C/section-141.23 (accessed on 12 June 2023).
- Bilal, M.; Kazi, T.G.; Afridi, H.I.; Ali, J.; Baig, J.A.; Arain, M.B.; Khan, M. A new tunable dispersive liquid-liquid micro extraction method developed for the simultaneous preconcentration of lead and cadmium from lakes water: A multivariate study. Spectrochim. Acta Part A 2017, 183, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Esmailzadeh, A.; Afzali, D.; Fayazi, M. Determination of lead(II) in environmental water samples by solid-phase extraction using a novel modified carbon hybridised sepiolite combined with flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2020, 102, 5064–5076. [Google Scholar] [CrossRef]
- Tunçeli, A.; Ulaş, A.; Acar, O.; Türker, A.R. solid phase extraction of cadmium and lead from water by amberlyst 15 and determination by flame atomic absorption spectrometry. Bull. Environ. Contam. Toxicol. 2019, 102, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Karadaş, C.; Turhan, O.; Kara, D. Synthesis and application of a new functionalized resin for use in an on-line, solid phase extraction system for the determination of trace elements in waters and reference cereal materials by flame atomic absorption spectrometry. Food Chem. 2013, 141, 655–661. [Google Scholar] [CrossRef]
- Altunay, N.; Hazer, B.; Tuzen, M.; Elik, A. A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent: Synthesis, characterization and application. Food Chem. 2021, 359, 129923. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.A.; El Sheikh, R.; Youssef, A.O.; Gouda, N.; Gamil, W.; Khadrajy, H.A. Preconcentration and separation of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectroscopy determinations. Int. J. Environ. Anal. Chem. 2020, 103, 364–377. [Google Scholar] [CrossRef]
- Turan, K.; Kalfa, O.M. Removal of lead from aqueous solution using electrospun nanofibers: Preparation, characterization, adsorption isotherm, and kinetic study. Anal. Methods 2022, 14, 3382–3396. [Google Scholar] [CrossRef]
- Malik, H.; Qureshi, U.A.; Muqeet, M.; Mahar, R.B.; Ahmed, F.; Khatri, Z. Removal of lead from aqueous solution using polyacrylonitrile/magnetite nanofibers. Environ. Sci. Pollut. Res. 2018, 25, 3557–3564. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Z.; Zhao, X.; He, H. Efficient removal of lead and copper ions from water by enhanced strength-toughness alginate composite fibers. Int. J. Biol. Macromol. 2019, 134, 223–229. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Li, J.; Li, L.; Hu, W. Surface-grafting polymers: From chemistry to organic electronics. Mater. Chem. Front. 2020, 4, 692–714. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Hilal, N. Surface design of liquid separation membrane through graft polymerization: A state of the art review. Membranes 2021, 11, 832. [Google Scholar] [CrossRef]
- Wohlhauser, S.; Delepierre, G.; Labet, M.; Morandi, G.; Thielemans, W.; Weder, C.; Zoppe, J.O. Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications. Macromolecules 2018, 51, 6157–6189. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; McDonald, A.G. A review on grafting of biofibers for biocomposites. Materials 2016, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Luo, L.; Chen, Z.; Liang, K. Syntheses, characterization and adsorption properties for Pb2+ of silica-gel functionalized by dendrimer-like polyamidoamine and 5-sulfosalicylic acid. Appl. Surf. Sci. 2016, 364, 86–95. [Google Scholar] [CrossRef]
- Lotfi, Z.; Mousavi, H.Z.; Sajjadi, S.M. Covalently bonded dithiocarbamate-terminated hyperbranched polyamidoamine polymer on magnetic graphene oxide nanosheets as an efficient sorbent for preconcentration and separation of trace levels of some heavy metal ions in food samples. J. Food Meas. Charact. 2020, 14, 293–302. [Google Scholar] [CrossRef]
- Kumar, N.S.; Imran, K.; Harinath, Y.; Seshaiah, K. Synthesis and characterisation of new hybrid sorbent, 2,2′-dipyridyl ketone functionalised SBA 15 and its application in solid-phase extraction of Pb(II) & Cd(II) from environmental samples. Int. J. Environ. Anal. Chem. 2020, 102, 1828384. [Google Scholar] [CrossRef]
- Chen, Y.; He, M.; Chen, B.; Hu, B. Thiol-grafted magnetic polymer for preconcentration of Cd, Hg, Pb from environmental water followed by inductively coupled plasma mass spectrometry detection. Spectrochim. Acta Part B 2021, 177, 106071. [Google Scholar] [CrossRef]
- Goudarzi, S.; Fahimirad, B.; Rajabi, M.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Recruiting chemical grafting method for surface modification of stainless steel to fabricate a selective sorbent for solid phase microextraction of mercury metal ion. Environ. Sci. Pollut. Res. 2023, 30, 3121–3132. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Vázquez, T.; Pérez-Silva, I.; Galán-Vidal, C.A.; Ibarra, I.S.; Rodríguez, J.A.; Páez-Hernández, M.E. Solution blow spinning polysulfone-Aliquat 336 nanofibers: Synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions. J. Polym. Eng. 2022, 42, 966–977. [Google Scholar] [CrossRef]
- Vedula, S.S.; Yadav, G.D. Treatment of wastewater containing alizarin red dye: Development and application of magnetic chitosan as a natural eco-friendly material. Clean Technol. Environ. Policy 2023, 25, 865–878. [Google Scholar] [CrossRef]
- Ganj, M.; Asadollahi, M.; Mousavi, S.A.; Bastani, D.; Aghaeifard, F. Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. J. Polym. Res. 2019, 26, 231. [Google Scholar] [CrossRef]
- Badiei, Y.M.; Traba, C.; Rosales, R.; Rojas, A.L.; Amaya, C.; Shahid, M.; Vera-Rolong, C.; Concepcion, J.J. Plasma-initiated graft polymerization of acrylic acid onto fluorine-doped tin oxide as a platform for immobilization of water-oxidation catalysts. ACS Appl. Mater. Interfaces 2021, 13, 14077–14090. [Google Scholar] [CrossRef]
- Yuan, H.; Qian, B.; Zhang, W.; Lan, M. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization. Appl. Surf. Sci. 2016, 363, 483–489. [Google Scholar] [CrossRef]
- Hidzir, N.M.; Radzali, N.A.M.; Rahman, I.A.; Shamsudin, S.A. Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications. Nucl. Eng. Technol. 2020, 52, 320–2327. [Google Scholar] [CrossRef]
- Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process Eng. 2020, 33, 101038. [Google Scholar] [CrossRef]
- Guleria, A.; Kumari, G.; Lima, E.C. Cellulose-g-poly-(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters. Carbohydr. Polym. 2020, 228, 115396. [Google Scholar] [CrossRef]
- Dias, F.T.G.; Rempel, S.P.; Agnol, L.D.; Bianchi, O. The main blow spun polymer systems: Processing conditions and applications. J. Polym. Res. 2020, 27, 205. [Google Scholar] [CrossRef]
- Dadol, G.C.; Kilic, A.; Tijing, L.D.; Lim, K.J.A.; Cabatingan, L.K.; Tan, N.P.B.; Stojanovska, E.; Polat, Y. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications. Mater. Today Commun. 2020, 25, 101656. [Google Scholar] [CrossRef]
- Gutierrez, C.G.; Cáceres Montenegro, G.; Minari, R.J.; Vega, J.R.; Gugliotta, L.M. Scale inhibitor and dispersant based on poly (acrylic acid) obtained by redox-initiated polymerization. Macromol. React. Eng. 2019, 13, 1900007. [Google Scholar] [CrossRef]
- Kumar, M.; Gehlot, P.S.; Parihar, D.; Surolia, P.K.; Prasad, G. Promising grafting strategies on cellulosic backbone through radical polymerization processes. Rev. Eur. Polym. J. 2021, 152, 110448. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, H.; Lin, Z.; Xu, S.; Xie, J.; Zhang, A. Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr. Polym. 2019, 224, 115022. [Google Scholar] [CrossRef] [PubMed]
- Gancarz, I.; Poźniak, G.; Bryjak, M.; Frankiewicz, A. Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta Polym. 1999, 50, 317–326. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Zakaria, K.M. Synthesis, characterization, and biocompatibility of poly (acrylic acid/methyl methacrylate)-grafted-poly (ethylene-co-tetrafluoroethylene) film for prosthetic cardiac valves. Colloid. Polym. Sci. 2014, 292, 3301–3310. [Google Scholar] [CrossRef]
- Shalaby, T.I.; El-Kady, M.F.; Zaki, A.E.H.M.; El-Kholy, S.M. Preparation and application of magnetite nanoparticles immobilized on cellulose acetate nanofibers for lead removal from polluted water. Water Sci. Technol. Water Supply 2016, 17, 176–187. [Google Scholar] [CrossRef]
- Razzaz, A.; Ghorban, S.; Hosayni, L.; Irani, M.; Aliabadi, M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Instig. Chem. Eng. 2016, 58, 333–343. [Google Scholar] [CrossRef]
- Aliabadi, M.; Irani, M.; Ismaeili, J.; Piri, H.; Parnian, M.J. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem. Eng. J. 2013, 220, 237–243. [Google Scholar] [CrossRef]
- Deng, J.; Kang, X.; Chen, L.; Wang, Y.; Gu, Z.; Lu, Z. A nanofiber functionalized with dithizone by co-electrospinning for lead (II) adsorption from aqueous media. J. Hazard. Mater. 2011, 196, 187–193. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, S.; He, F.; Liu, Y.; Mao, W.; Guan, Y. Highly efficient and selective capture of heavy metals by poly (acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 2019, 378, 122215. [Google Scholar] [CrossRef]
- Morlay, C.; Cromer, M.; Mouginot, Y.; Vittori, O. Potentiometric study of Cd(II) and Pb(II) complexation with two high molecular weight poly (acrylic acids); comparison with Cu(II) and Ni(II). Talanta 1999, 48, 1159–1166. [Google Scholar] [CrossRef]
- Yu, J.; Lu, Q.; Zheng, J.; Li, Y. Chitosan/attapulgite/poly (acrylic acid) hydrogel prepared by glow-discharge electrolysis plasma as a reusable adsorbent for selective removal of Pb2+ ions. Iran. Polym. J. 2019, 28, 881–893. [Google Scholar] [CrossRef]
Based Fiber Material | Fiber Modifier | Fiber Preparation Technique | Pb(II) Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|---|
Polyvinyl alcohol (PVA) | Malva sylestris L. (seed biomaterial) | Electrospinning | 588.2 | [14] |
Polyacrylonitrile (PAN)-FeCl3 | Magnetite (Fe3O4) | Electrospinning | 156.25 | [15] |
Sodium alginate and polyethylene oxide (PEO) | Graphene oxide | Electrospinning | 386.5 | [16] |
Cellulose acetate (CA) and Fe3O4 | - | Electrospinning | 44.05 | [41] |
Chitosan-TiO2 | - | Electrospinning | 579.10 | [42] |
Chitosan and polyethylene oxide (PEO) | Electrospinning | 214.8 | [43] | |
Polyacrylonitrile (PAN) and Ditizone | NaOH 1 | Electrospinning | 0.016 2 | [44] |
Polysulfone (PSf) | Acrylic acid | Blow-spinning | 2.32 | This work |
Parameters | Values |
---|---|
Linear range (mg L−1) | 0.008–3.12 |
Correlation coefficient (R2) | 0.9999 |
LOD (mg L−1) | 0.05 |
LOQ (mg L−1) | 0.16 |
Linear equation (y = ax + b) | 3.3161x + 0.1347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acuña-Nicolás, J.; Montesinos-Vázquez, T.; Pérez-Silva, I.; Galán-Vidal, C.A.; Ibarra, I.S.; Páez-Hernández, M.E. Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions. Polymers 2023, 15, 3086. https://doi.org/10.3390/polym15143086
Acuña-Nicolás J, Montesinos-Vázquez T, Pérez-Silva I, Galán-Vidal CA, Ibarra IS, Páez-Hernández ME. Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions. Polymers. 2023; 15(14):3086. https://doi.org/10.3390/polym15143086
Chicago/Turabian StyleAcuña-Nicolás, Jessica, Tanese Montesinos-Vázquez, Irma Pérez-Silva, Carlos A. Galán-Vidal, Israel S. Ibarra, and M. Elena Páez-Hernández. 2023. "Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions" Polymers 15, no. 14: 3086. https://doi.org/10.3390/polym15143086
APA StyleAcuña-Nicolás, J., Montesinos-Vázquez, T., Pérez-Silva, I., Galán-Vidal, C. A., Ibarra, I. S., & Páez-Hernández, M. E. (2023). Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions. Polymers, 15(14), 3086. https://doi.org/10.3390/polym15143086