Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Establishment of Theoretical Model
2.1.1. Maxwell’s Equations
2.1.2. Heat Transfer Equations
2.1.3. Boundary Conditions
2.2. Establishment of Finite Element Model
2.2.1. Establishment of Geometric Model
2.2.2. Setting of Physical Parameters
3. Results
3.1. Induction Heating Mechanism for Rotating CFRP Circular Tubes
3.2. Experimental Verification and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, D.; Beal, A.; Kwon, P. Effect of Tool Wear on Hole Quality in Drilling of Carbon Fiber Reinforced Plastic–Titanium Alloy Stacks Using Tungsten Carbide and Polycrystalline Diamond Tools. J. Manuf. Sci. Eng. 2016, 138, 031006. [Google Scholar] [CrossRef]
- Wang, C.; Liu, G.; An, Q.; Chen, M. Occurrence and Formation Mechanism of Surface Cavity Defects during Orthogonal Milling of CFRP Laminates. Compos. Part B Eng. 2017, 109, 10–22. [Google Scholar] [CrossRef]
- Hegde, S.; Satish Shenoy, B.; Chethan, K.N. Review on Carbon Fiber Reinforced Polymer (CFRP) and Their Mechanical Performance. Mater. Today Proc. 2019, 19, 658–662. [Google Scholar] [CrossRef]
- Geier, N.; Davim, J.P.; Szalay, T. Advanced Cutting Tools and Technologies for Drilling Carbon Fibre Reinforced Polymer (CFRP) Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105552. [Google Scholar] [CrossRef]
- Caggiano, A.; Centobelli, P.; Nele, L.; Teti, R. Multiple Sensor Monitoring in Drilling of CFRP/CFRP Stacks for Cognitive Tool Wear Prediction and Product Quality Assessment. Procedia CIRP 2017, 62, 3–8. [Google Scholar] [CrossRef]
- Soutis, C. Fibre Reinforced Composites in Aircraft Construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Li, Z.; Haigh, A.; Soutis, C.; Gibson, A. Principles and Applications of Microwave Testing for Woven and Non-Woven Carbon Fibre-Reinforced Polymer Composites: A Topical Review. Appl. Compos. Mater. 2018, 25, 965–982. [Google Scholar] [CrossRef]
- Mizukami, K.; Mizutani, Y.; Todoroki, A.; Suzuki, Y. Detection of Delamination in Thermoplastic CFRP Welded Zones Using Induction Heating Assisted Eddy Current Testing. NDT E Int. 2015, 74, 106–111. [Google Scholar] [CrossRef]
- Lundström, F.; Frogner, K.; Andersson, M. A Numerical Model to Analyse the Temperature Distribution in Cross-Ply CFRP during Induction Heating. Compos. Part B Eng. 2020, 202, 108419. [Google Scholar] [CrossRef]
- Singh, S.B.; Vummadisetti, S.; Chawla, H. Influence of Curing on the Mechanical Performance of FRP Laminates. J. Build. Eng. 2018, 16, 1–19. [Google Scholar] [CrossRef]
- Joseph, C.; Viney, C. Electrical Resistance Curing of Carbon-Fibre/Epoxy Composites. Compos. Sci. Technol. 2000, 60, 315–319. [Google Scholar] [CrossRef]
- Bayerl, T.; Duhovic, M.; Mitschang, P.; Bhattacharyya, D. The Heating of Polymer Composites by Electromagnetic Induction—A Review. Compos. Part A Appl. Sci. Manuf. 2014, 57, 27–40. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Jiang, M.; Wang, J.; Wei, M.; Zhang, L. Temperature Field Characterization and Optimization of Temperature Field Distribution in Pipe Lining Process Based on Electromagnetic Induction Heating System. Case Stud. Therm. Eng. 2021, 28, 101609. [Google Scholar] [CrossRef]
- Li, L.; Mi, G.; Wang, C. A Comparison between Induction Pre-Heating and Induction Post-Heating of Laser-Induction Hybrid Welding on S690QL Steel. J. Manuf. Process. 2019, 43, 276–291. [Google Scholar] [CrossRef]
- Wu, S.; Yang, N.; Jin, Y.; Li, D.; Xu, Y.; Xu, X.; Jin, Z. Development of an Innovative Induction Heating Technique for the Treatment of Liquid Food: Principle, Experimental Validation and Application. J. Food Eng. 2020, 271, 109780. [Google Scholar] [CrossRef]
- Obaidi, H.; Gomez-Meijide, B.; Garcia, A. A Fast Pothole Repair Method Using Asphalt Tiles and Induction Heating. Constr. Build. Mater. 2017, 131, 592–599. [Google Scholar] [CrossRef]
- Wasselynck, G.; Trichet, D.; Ramdane, B.; Fouldagar, J. Interaction Between Electromagnetic Field and CFRP Materials: A New Multiscale Homogenization Approach. IEEE Trans. Magn. 2010, 46, 3277–3280. [Google Scholar] [CrossRef]
- Lundström, F.; Frogner, K.; Andersson, M. Numerical Modelling of CFRP Induction Heating Using Temperature-Dependent Material Properties. Compos. Part B Eng. 2021, 220, 108982. [Google Scholar] [CrossRef]
- Fu, T.; Xu, J.; Hui, Z. Analysis of Induction Heating Temperature Field of Plain Weave CFRP Based on Finite Element Meso Model. Appl. Compos. Mater. 2021, 28, 149–163. [Google Scholar] [CrossRef]
- Fink, B.K.; McCullough, R.L.; Gillespie, J.W. A Local Theory of Heating in Cross-Ply Carbon Fiber Thermoplastic Composites by Magnetic Induction. Polym. Eng. Sci. 2004, 32, 357–369. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, J.; Fu, T. Design and Optimization of Coil Structure Based on the Uniformity of Core Temperature Field. J. Mech. Sci. Technol. 2022, 36, 2903–2912. [Google Scholar] [CrossRef]
- Park, K.; Lee, S.-I. Localized Mold Heating with the Aid of Selective Induction for Injection Molding of High Aspect Ratio Micro-Features. J. Micromech. Microeng. 2010, 20, 035002. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, Y.; Liu, M.; Zhang, X.; Zhang, H. Numerical Simulation of Composite Material Light-Curing Process Based on the Finite Element Analysis Method. Appl. Compos. Mater. 2022, 1, 1–18. [Google Scholar] [CrossRef]
CFRP Circular Tubes | 45# Steel Mold | FRP Mold | Copper Coil | Air | |||
---|---|---|---|---|---|---|---|
Plain weave | 89 degrees | 45 degrees | N/A | N/A | N/A | N/A | |
Relative permeability | 1 | 200 | 1 | 1 | 1 | ||
Relative dielectric constant | 6.8 | 1 | 4.2 | 1 | 1 | ||
Density(kg/m3) | 1500 | 7870 | 2000 | 8960 | N/A | ||
Constant pressure heat capacity (J/(kg·K)) | 1000 | 486 | 923.8 | 385 | N/A | ||
Conductivity (S/m) | 30, 1800, 1800 | 30, 1800, 30 | 30, 1800, 1800 | 1.62 × 106 | 0 | 6 × 107 | 1 |
Thermal conductivity (W/(m·K)) | 2, 8, 8 | 2, 8, 2 | 2, 8, 8 | 49.8 | 0.287 | 400 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Gu, Y.; Fu, T.; Zhang, X.; Zhang, H. Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method. Polymers 2023, 15, 3039. https://doi.org/10.3390/polym15143039
Xu J, Gu Y, Fu T, Zhang X, Zhang H. Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method. Polymers. 2023; 15(14):3039. https://doi.org/10.3390/polym15143039
Chicago/Turabian StyleXu, Jiazhong, Yunfei Gu, Tianyu Fu, Xiaobing Zhang, and Hao Zhang. 2023. "Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method" Polymers 15, no. 14: 3039. https://doi.org/10.3390/polym15143039
APA StyleXu, J., Gu, Y., Fu, T., Zhang, X., & Zhang, H. (2023). Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method. Polymers, 15(14), 3039. https://doi.org/10.3390/polym15143039