Evaluation of Organofunctionalized Polydimethylsiloxane Films for the Extraction of Furanic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of the Hybrid Membranes
2.3. FTIR
2.4. Thermogravimetric Analysis
2.5. Contact Angle
2.6. Thickness Measurement
2.7. pH Stability
2.8. Stability to Solvents
2.9. Analyte Extraction
3. Results
Synthesis of PDMS_CX Hybrid Membranes by Sol–Gel Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buffo, C.; Candelli-Freire, C. Coffee flavor: An overview. Flavor Fragr. J. 2004, 19, 99–104. [Google Scholar] [CrossRef]
- ARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Dry Cleaning, Some Chlorinated Solvents and Other Industrial Chemicals. Lyon (FR): International Agency for Research on Cancer. IARC Monogr. Eval. Carcinog. Risks Hum. 1995, 63, 394–406. Available online: https://www.ncbi.nlm.nih.gov/books/NBK464353/ (accessed on 21 April 2023).
- Glatt, H.; Sommer, Y. Health risks of 5-hydorxymethylfurfural (HMF) and related compounds. In Acrylamide and Other Hazardous Compounds in Head-Treated Foods; Skog, K., Alexander, J.J., Eds.; Wood Heads Publ. Ltd.: Boca Raton, FL, USA, 2006; pp. 328–357. [Google Scholar] [CrossRef]
- Anese, M. Chapter 65—Furan and Other Furanic Compounds in Coffee: Occurrence, Mitigation Strategies, and Importance of Processing. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 541–547. ISBN 9780124046993. [Google Scholar] [CrossRef]
- Tsao, W.-X.; Chen, B.-H.; Lin, P.; You, S.-H.; Kao, T.-H. Analysis of Furan and Its Derivatives in Food Matrices Using Solid Phase Extraction Coupled with Gas Chromatography-Tandem Mass Spectrometry. Molecules 2023, 28, 1639. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Huang, G.; Zhang, Y.; Hua, J.; Wang, S.; Shen, M.; Li, C.; Mancorte, M.; Xie, M. Analysis of furan in heat-processed foods in China by automated headspace gas chromatography-mass spectrometry (HS-GC-MS). Food Control. 2012, 30, 62–68. [Google Scholar] [CrossRef]
- Mancilla-Margalli, N.A.; López, M.G. Generation of Maillard Compounds from Inulin during the Thermal Processing of Agave tequilana Weber Var. azul. J. Agric. Food Chem. 2002, 50, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Chaichi, M.; Mohammadi, A.; Hashemi, M. Optimization and application of headspace liquid-phase microextraction coupled with gas chromatography-mass spectrometry for determination of furanic compounds in coffee using response surface methodology. J. Microc. 2013, 108, 46–52. [Google Scholar] [CrossRef]
- Nunkululeko, S.M.; Somandla, N.; Fanyana, M.M.; Lawrence, M.M.; Vusumzi, E.P. Determination of furanic compounds in Mopane worms, corn, and peanuts using headspace solid-phase microextraction with gas chromatography-flame ionization detector. Food Chem. 2022, 369, 130944. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, X.; Zhang, H.; Wei, J.; Huo, Z.; Ji, W. Simultaneous detection of furfural, 5-methylfurfural and 5-hydroxymethylfurfural in tsamba, roasted highland barley flour, by UPLC-MS/MS. J. Food Compost. Anal. 2023, 116, 105095. [Google Scholar] [CrossRef]
- Fan, H.T.; Tang, Q.; Sun, Y.; Zhang, Z.G.; Li, W.X. Selective removal of antimony(III) from aqueous solution using antimony(III)-imprinted organic–inorganic hybrid sorbents by combination of surface imprinting technique with sol–gel process. Chem. Eng. J. 2014, 258, 146–156. [Google Scholar] [CrossRef]
- Naseer, D.; Ha, H.; Lee, J.; Lee, H.J.; Song, I.-H. High-Performance γ-Al2O3 Multichannel Tube-Type Tight Ultrafiltration Membrane Using a Modified Sol-Gel Method. Membranes 2023, 13, 405. [Google Scholar] [CrossRef]
- Dimitriev, Y.; Iordanova, R. History of sol-gel science and technology. J. Chem. Technol. Metall. 2008, 43, 181–192. [Google Scholar]
- Wan Ibrahim, W.I.; Abdul Keyon, A.S.; Prastomo, N.; Matsuda, A. Synthesis and characterization of polydimethylsiloxane, cyanopropyltriethoxysilane-derived hybrid coating for stir bar sorptive extraction. J. Sol-Gel. Sci. Technol. 2011, 59, 128–134. [Google Scholar] [CrossRef]
- Azmami, O.; Sajid, L.; Boukhriss, A.; Majid, S.; El Ahmadi, Z.; Benayada, A.; Gmouh, S. Sol-gel and polyurethane based flame retardant and water repellent coating for Palm/PES nonwovens composite. J. Sol-Gel Sci. Technol. 2021, 97, 92–105. [Google Scholar] [CrossRef]
- Ismail, W.N.W. Sol–gel technology for innovative fabric finishing—A Review. J. Sol-Gel Sci. Technol. 2016, 78, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Woo-Chan, C.; Seong-Hyeop, K.; Won-Ki, L.; Saravanan, N.; Chang-Sik, H. UV-curable organic–inorganic hybrid hard coatings for metal sheets. J. Coat. Technol. Res. 2019, 16, 771–780. [Google Scholar] [CrossRef]
- Richter, P.; Leiva, C.; Choque, C.; Giordano, A. and Sepúlveda, B. Rotating-disk sorptive extraction of nonylphenol from water simples. J. Chromatogr. A 2009, 1216, 8598–8602. [Google Scholar] [CrossRef]
- Pliego, J.R.; Schiavon, M.A. Jacobsen’s Catalyst Interaction with Polydimethylsiloxane/Tetraethoxysilane Network and Solvent Molecules: Theoretical Design of a New Polymeric Membrane. J. Phys. Chem. C 2008, 112, 14830–14834. [Google Scholar] [CrossRef]
- Guedes, D.F.C.; Mac Leod, T.C.O.; Gotardo, M.C.A.F.; Schiavon, M.A.; Yoshida, I.V.P.; Ciuffi, K.J.; Assis, M.D. Investigation of a new oxidative catalytic system involving Jacobsen’s catalyst in the absence of organic solvents. Appl. Catal. A Gen. 2005, 296, 120–127. [Google Scholar] [CrossRef]
- Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. [Google Scholar] [CrossRef]
- Ng, N.T.; Kamaruddin, A.F.; Wan Ibrahim, W.A.; Sanagi, M.M.; Abdul Keyon, A.S. Advances in organic–inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples. J. Sep. Sci. 2018, 41, 195–208. [Google Scholar] [CrossRef]
- Majors, R.E. Highlights of HPLC 2002. (Column Watch). LC-GC N. Am. 2002, 20, 830. [Google Scholar]
- Hu, Y.; Zheng, Y.; Zhu, F.; Li, G. Sol–gel coated polydimtehylsoloxane/b-cyclodextrin as novel stationary phase for stir bar sorptive extraction and its application to analysis of estrogens and bisphenol A. J. Chromatogr. A 2007, 1148, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.M.; Lancas, F.M.; Queiroz, M.E.C. Polydimethylsiloxane/polypyrrole stir bar sorptive extraction and liquid chromatography (SBSE/LC-UV) analysis of antidepressants in plasma samples. Anal. Chim. Acta. 2009, 633, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wan Ibrahim, W.A.; Keyon, A.; Sanagi, M.M. Preparation and characterization of a new sol–gel hybrid based tetraethoxysilane-polydimethylsiloxane as a stir bar extraction sorbent materials. J. Sol-Gel Sci. Technol. 2011, 58, 602–611. [Google Scholar] [CrossRef] [Green Version]
- Bratkowska, D.; Cormack, P.A.G.; Borrulla, F.; Marcéa, R.M. Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar pharmaceuticals from complex water samples. J. Chromatogr. 2012, 1225, 1–7. [Google Scholar] [CrossRef]
- Guan, W.; Xu, F.; Guan, Y. Poly(phthalazine ether sulfone ketone) as novel stationary phase for stir bar sorptive extraction of organochlorine compounds and organophosphorus pesticides. J. Chromatogr. 2008, 1177, 28–35. [Google Scholar] [CrossRef]
- Burgos-Tan, M.J.; Pérez-Padilla, Y.; Avila-Ortega, A.; Barrón-Zambrano, J.A.; Vilchis-Néstor, A.R.; Carrera-Figueiras, C.; Muñoz-Rodríguez, D. Preparation, characterization and evaluation of a hybrid polymeric coating with sorbent properties. Chem. Pap. 2017, 71, 1205–1215. [Google Scholar] [CrossRef]
- Muñoz-Rodriguéz, D.; Pérez-Padilla, Y.; Ávila-Ortega, A.; Barrón-Zambrano, J.A.; Carrera-Figueiras, C. Coating evaluation of polidimethylsiloxane-aminopropylsiloxane for stir bar sorptive extraction. J. Coat. Technol. Res. 2021, 18, 1143–1151. [Google Scholar] [CrossRef]
- Liu, L.; Sheardown, H. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials 2005, 26, 233–244. [Google Scholar] [CrossRef]
- Padilla-Hernández, R.E.; Medina-Ramirez, A.; Avila-Ortega, A.; Barrón-Zambrano, J.A.; Muñoz-Rodríguez, D.; Carrera-Figueiras, C.; Pérez-Padilla, Y. Synthesis of hybrid polymeric fibers of different functionalized alkoxysilane coupling agents obtained via sol-gel and electrospinning technique: Effect on the morphology by addition of PVA. J. Solgel Sci. Technol. 2021, 99, 25–31. [Google Scholar] [CrossRef]
- Ballisteri, A.; Garozzo, D.; Montaudo, G. Mass spectral characterization and thermal decomposition mechanism of poly(dimethylsiloxane). Macromolecules 1984, 7, 1312–1315. [Google Scholar] [CrossRef]
- Ávila-Martínez, M.A.; Pérez-Padilla, Y.; Medina-Peralta, S.; Ávila-Ortega, A.; Muñoz-Rodríguez, D. Preparation and characterization of polydimethylsiloxane containing cyano/phenyl groups for potential use in sorptive extraction. J. Coat. Technol. Res. 2021, 18, 1087–1094. [Google Scholar] [CrossRef]
Column | Mobile Phase | Circumvention: Gradient | Injection Volume | Analytical Wavelength |
---|---|---|---|---|
C18 5 µm, 4.6 mm × 50 mm | A: Acetonitrile B: Water | 0.4 min 95% B 4–5 min 80% B 4–5 min 80% B 7 min 95% B | 20 µL | 278 nm, 265 nm, 248 nm |
PDMS_CX Membranes | Contact Angle (°) |
---|---|
PDMS_C1 | 68.45 ± 2.14 |
PDMS_C2 | 68.29 ± 2.44 |
PDMS_C3 | 68.04 ± 2.46 |
Furanic Compound | λAnalytical (nm) | tR (min) | Average Concentration (ppm) | ||
---|---|---|---|---|---|
PDMS_C1 (0.22 mm) | PDMS_C2 (0.33 mm) | PDMS_C3 (0.55 mm) | |||
5–HMF | 278 | 1.040 | nd | nd | nd- |
2–FAL | 278 | 1.381 | 0.58 ± 0.03 | 0.58 ± 0.06 | 1.08 ± 0.02 |
2–FMC | 278 | 2.231 | 1.01 ± 0.06 | 1.02 ± 0.11 | 1.66 ± 0.03 |
5–MFA | 278 | 2.659 | 1.45 ± 0.06 | 1.51 ± 0.15 | 2.30 ± 0.03 |
FEMA | 248 | 3.734 | 2.79 ± 0.01 | 3.06 ± 0.21 | 3.78 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Padilla, Y.; Aguilar-Vega, M.; Uc-Cayetano, E.G.; Esparza-Ruiz, A.; Yam-Cervantes, M.A.; Muñoz-Rodríguez, D. Evaluation of Organofunctionalized Polydimethylsiloxane Films for the Extraction of Furanic Compounds. Polymers 2023, 15, 2851. https://doi.org/10.3390/polym15132851
Pérez-Padilla Y, Aguilar-Vega M, Uc-Cayetano EG, Esparza-Ruiz A, Yam-Cervantes MA, Muñoz-Rodríguez D. Evaluation of Organofunctionalized Polydimethylsiloxane Films for the Extraction of Furanic Compounds. Polymers. 2023; 15(13):2851. https://doi.org/10.3390/polym15132851
Chicago/Turabian StylePérez-Padilla, Yamile, Manuel Aguilar-Vega, Erbin Guillermo Uc-Cayetano, Adriana Esparza-Ruiz, Marcial Alfredo Yam-Cervantes, and David Muñoz-Rodríguez. 2023. "Evaluation of Organofunctionalized Polydimethylsiloxane Films for the Extraction of Furanic Compounds" Polymers 15, no. 13: 2851. https://doi.org/10.3390/polym15132851
APA StylePérez-Padilla, Y., Aguilar-Vega, M., Uc-Cayetano, E. G., Esparza-Ruiz, A., Yam-Cervantes, M. A., & Muñoz-Rodríguez, D. (2023). Evaluation of Organofunctionalized Polydimethylsiloxane Films for the Extraction of Furanic Compounds. Polymers, 15(13), 2851. https://doi.org/10.3390/polym15132851