Investigating the Effects of Al2O3 Microparticles on Wood Waste OSBs: A Study on Physical, Mechanical, and Durability Performance
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Balsa Wood OSB Production
2.3. Balsa Wood OSB Characterization
2.4. Evaluating the Durability of the OSBs via Accelerated Aging Test
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical and Mechanical Properties
3.2. Balsa Wood OSBs after Accelerated Aging Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, V.U.; Nascimento, M.F.; Oliveira, P.R.; Panzera, T.H.; Rezende, M.O.; Silva, D.A.L.; Aquino, V.B.d.M.; Rocco Lahr, F.A.; Christoforo, A.L. Circular vs. linear economy of building materials: A case study for particleboards made of recycled wood and biopolymer vs. conventional particleboards. Constr. Build. Mater. 2021, 285, 122906. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Borrega, M.; Ahvenainen, P.; Gibson, L. Mechanics of balsa (Ochroma pyramidale) wood. Mech. Mater. 2015, 84, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Barbirato, G.H.A.; Junior, W.E.L.; Martins, R.H.; Miyamoto, B.; Ho, T.X.; Sinha, A.; Fiorelli, J. Sandwich OSB Trapezoidal Core Panel with Balsa Wood Waste. Waste Biomass Valorization 2022, 13, 2183–2194. [Google Scholar] [CrossRef]
- Lopes Junior, W.E.; Barbirato, G.H.A.; Pavesi, M.; Soriano, J.; Fiorelli, J. Avaliação do teor ótimo de resinas orgânicas para produção de painéis OSB de madeira Balsa (Ochroma pyramidale) residual. Sci. For. 2021, 49, 1–11. [Google Scholar] [CrossRef]
- Campos Filho, L.E.; Freire, M.T.D.A.; Schmidt, R.M.; Júnior, W.E.L.; Barbirato, G.H.A.; Martins, R.H.B.; Fiorelli, J. (Embalagem secundária do tipo display de OSB de resíduo de madeira-balsa (Ochroma pyramidale). Rev. Ciência Tecnol. Ambiente 2021, 11, e11186. [Google Scholar] [CrossRef]
- Cabral, M.R.; Blanchet, P. A State of the Art of the Overall Energy Efficiency of Wood Buildings-An Overview and Future Possibilities. Materials 2021, 14, 1848. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Page, D.; Simpson, I. Manufacturedstructuraltimberbuildingmaterialsandtheirdurability. Constr. Build. Mater. 2019, 217, 84–92. [Google Scholar] [CrossRef]
- Hellmeister, V.; Barbirato, G.H.A.; Lopes Junior, W.E.; Santos, V.D.; Fiorelli, J. Evaluation of Balsa Wood (Ochroma pyramidale) waste and OSB boards with castor oil polyurethane resin. Int. Wood Prod. J. 2021, 12, 267–276. [Google Scholar] [CrossRef]
- Fiorelli, J.; Bueno, S.B.; Cabral, M.R. Assessment of multilayer particleboards produced with green coconut and sugarcane bagasse fibers. Constr. Build. Mater. 2019, 205, 1–9. [Google Scholar] [CrossRef]
- Yildirim, M.; Candan, Z.; Gonultas, O. Chemical performance analysis of nanocellulose/boron compounds reinforced hybrid UF resin. Green Mater. 2021, 10, 90–96. [Google Scholar] [CrossRef]
- Zhao, S.; Zhan, K.; Lu, Q.; Xia, S.; Guo, C.; Yi, T.; Morrell, J.J.; Gao, W.; And Lei, H. Fabrication of nano-cupric oxide in phenol-formaldehyde resin adhesive: Effect of cupric chloride concentration on resin performance. Wood Sci. Technol. 2020, 54, 1551–1567. [Google Scholar] [CrossRef]
- MingZhu, P.; ChunXiang, D.; Shuai, Z.; YanPing, H. Progress on flame retardancy of wood plastic composites. J. For. Eng. 2020, 5, 1–12. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, A.; Sharma, K.V.; Gupta, R. Application of High Conductive Nanoparticles to Enhance the Thermal and Mechanical Properties of Wood Composite. Mater. Today Proc. 2018, 5, 3143–3149. [Google Scholar] [CrossRef]
- Kumar, K.; Gupta, A.; Sharma, K.V.; And Nasir, M. Use of aluminum oxide nanoparticles in wood composites to enhance the heat transfer during hot-pressing. Eur. J. Wood Wood Prod. 2013, 71, 193–198. [Google Scholar] [CrossRef]
- Zhang, R.; Jin, X.; Wen, X.; Chen, Q.; Qin, D. Alumina nanoparticle modified phenol formaldehyde resin as a wood adhesive. Int. J. Adhes. Adhes. 2018, 81, 79–82. [Google Scholar] [CrossRef]
- Barbirato, G.H.A.; Junior, W.E.L.; Hellmeister, V.; Pavesi, M.; Fiorelli, J. OSB Panels with Balsa Wood Waste and Castor Oil Polyurethane Resin. Waste Biomass Valorization 2018, 1, 743–751. [Google Scholar] [CrossRef]
- EN 310:1993; Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 319:1993; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317:1993; Particleboards and Fibreboards—Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 300:2006; Aglomerado de Partículas de Madeira Longas e Orientadas (OSB)—Definições, Classificação e Especificações. European Committee for Standardization: Brussels, Belgium, 2006.
- APA PRP 108:1994; Performance Standards and Qualification Policy for Wood Structural Panels. The Engineered Wood Association: Tacoma, DC, USA, 1994.
- Lima, F.O.; Silva, L.C.L.; Ferreira, B.S.; Morais, C.A.G.; Bertolini, M.S.; Barreiros, R.M.; Azambuja, M.A.; Caraschi, J.C.; Favarim, H.R.; Campos, C.I. Influence of the addition of Al2O3 nanoparticles and the duration of pressing on the physical properties of OSB panels. BioResources 2022, 17, 3014–3024. [Google Scholar] [CrossRef]
- Surdi, P.G.; Bortoletto Júnior, G.; Castro, V.R.; Brito, F.M.S.; Berger, M.S.; Zanuncio, J.C. Particleboard production with residues from mechanical processing of amazonian woods. Rev. Árvore 2019, 43, 1–6. [Google Scholar] [CrossRef]
Accelerated Aging Test | Al2O3 Contents | Percentage of Microparticles | Number of OSBs |
---|---|---|---|
No | Reference | — | 3 |
No | C1-A | 1 | 3 |
No | C2-A | 2 | 3 |
No | C3-A | 3 | 3 |
Yes | Reference | — | 2 |
Yes | C2-A * | 2 | 2 |
Al2O3 Content | TS | Static Bending | IB | |||
---|---|---|---|---|---|---|
24 h | MOR-L | MOE-L | MOR-T | MOE-T | ||
Reference | 5 | 7 | 7 | 7 | 7 | 10 |
C1-A | 5 | 7 | 7 | 7 | 7 | 10 |
C2-A | 10 | 7 | 7 | 7 | 7 | 10 |
C3-A | 10 | 7 | 7 | 7 | 7 | 10 |
Al2O3 Content | Aging |
---|---|
Reference | Yes |
Reference | No |
C2-A | Yes |
C2-A | No |
Al2O3 Content | TS (%) | Static Bending (MPa) | IB (MPa) | |||
---|---|---|---|---|---|---|
24 h | MOR-L | MOR-T | MOE-L | MOE-T | ||
Reference (CV) | 30.77 A 22.91 | 27.26 A 24.99 | 12.99 B 24.43 | 4514 A 33.54 | 1280 B 15.13 | 0.29 B 21.58 |
C1-A (CV) | 38.35 A 17.37 | 27.23 A 14.57 | 12.40 B 12.76 | 4162 A 11.61 | 1266 B 11.66 | 0.40 AB 33.08 |
C2-A (CV) | 26.49 A 29.28 | 30.96 A 30.92 | 16.77 A 10.42 | 4726 A 23.67 | 1795 A 14.34 | 0.45 A 33.98 |
C3-A (CV) | 34.96 A 41.35 | 27.33 A 30.06 | 16.96 A 17.95 | 3858 A 26.25 | 1640 AB 27.65 | 0.39 AB 31.12 |
EN 300:2002 Type 2 | 20 | 22 | 11 | 3500 | 1400 | 0.34 |
Al2O3 Content | Aging | TS 24 h (%) | IB (MPa) |
---|---|---|---|
Reference | Yes | 25.72 (26.77) | 0.12 (55.90) |
Reference | No | 30.77 (22.91) | 0.29 (21.58) |
C2-A | Yes | 14.34 (34.08) | 0.18 (45.63) |
C2-A | No | 26.49 (29.28) | 0.45 (33.98) |
Properties | Before Aging | After Aging | ||
---|---|---|---|---|
Reference | C2-A | Reference | C2-A | |
TS 24 h (%) | A | A | A | B |
IB | A | A | A | A |
Reference | C2-A | |||
No Aging | Aging | No Aging | Aging | |
TS 24 h (%) | A | A | A | B |
IB | A | B | A | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes Junior, W.E.; Cabral, M.R.; Christoforo, A.L.; de Campos, C.I.; Fiorelli, J. Investigating the Effects of Al2O3 Microparticles on Wood Waste OSBs: A Study on Physical, Mechanical, and Durability Performance. Polymers 2023, 15, 2652. https://doi.org/10.3390/polym15122652
Lopes Junior WE, Cabral MR, Christoforo AL, de Campos CI, Fiorelli J. Investigating the Effects of Al2O3 Microparticles on Wood Waste OSBs: A Study on Physical, Mechanical, and Durability Performance. Polymers. 2023; 15(12):2652. https://doi.org/10.3390/polym15122652
Chicago/Turabian StyleLopes Junior, Wanley Eduardo, Matheus Roberto Cabral, André Luis Christoforo, Cristiane Inácio de Campos, and Juliano Fiorelli. 2023. "Investigating the Effects of Al2O3 Microparticles on Wood Waste OSBs: A Study on Physical, Mechanical, and Durability Performance" Polymers 15, no. 12: 2652. https://doi.org/10.3390/polym15122652
APA StyleLopes Junior, W. E., Cabral, M. R., Christoforo, A. L., de Campos, C. I., & Fiorelli, J. (2023). Investigating the Effects of Al2O3 Microparticles on Wood Waste OSBs: A Study on Physical, Mechanical, and Durability Performance. Polymers, 15(12), 2652. https://doi.org/10.3390/polym15122652