Key Factors in Enhancing Pseudocapacitive Properties of PANI-InOx Hybrid Thin Films Prepared by Sequential Infiltration Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nemade, K.; Dudhe, P.; Tekade, P. Enhancement of photovoltaic performance of polyaniline/graphene composite-based dye-sensitized solar cells by adding TiO2 nanoparticles. Solid State Sci. 2018, 83, 99–106. [Google Scholar] [CrossRef]
- Murugesan, T.; Kumar, R.R.; Anbalagan, A.K.; Lee, C.-H.; Lin, H.-N. Interlinked Polyaniline/ZnO Nanorod Composite for Selective NO2 Gas Sensing at Room Temperature. ACS Appl. Nano Mater. 2022, 5, 4921–4930. [Google Scholar] [CrossRef]
- Chen, S.; Huang, D.; Zeng, G.; Xue, W.; Lei, L.; Xu, P.; Deng, R.; Li, J.; Cheng, M. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer. Chem. Eng. J. 2020, 382, 122840. [Google Scholar] [CrossRef]
- Ham, J.; Park, S.; Jeon, N. Conductive Polyaniline–Indium Oxide Composite Films Prepared by Sequential Infiltration Synthesis for Electrochemical Energy Storage. ACS Omega 2023, 8, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Leng, C.Z.; Losego, M.D. A physiochemical processing kinetics model for the vapor phase infiltration of polymers: Measuring the energetics of precursor-polymer sorption, diffusion, and reaction. Phys. Chem. Chem. Phys. 2018, 20, 21506–21514. [Google Scholar] [CrossRef]
- Ham, J.; Ko, M.; Choi, B.; Kim, H.-U.; Jeon, N. Understanding Physicochemical Mechanisms of Sequential Infiltration Synthesis toward Rational Process Design for Uniform Incorporation of Metal Oxides. Sensors 2022, 22, 6132. [Google Scholar] [CrossRef]
- Biswas, M.; Libera, J.A.; Darling, S.B.; Elam, J.W. Polycaprolactone: A Promising Addition to the Sequential Infiltration Synthesis Polymer Family Identified through in Situ Infrared Spectroscopy. ACS Appl. Polym. Mater. 2020, 2, 5501–5510. [Google Scholar] [CrossRef]
- Babel, V.; Hiran, B.L. A review on polyaniline composites: Synthesis, characterization, and applications. Polym. Compos. 2021, 42, 3142–3157. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M.; Bober, P.; Humpolíček, P.; Kašpárková, V.; Sapurina, I.; Shishov, M.A.; Varga, M. Conducting Polymers: Polyaniline. In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 2015; pp. 1–44. [Google Scholar] [CrossRef]
- Wang, W.; Yang, F.; Chen, C.; Zhang, L.; Qin, Y.; Knez, M. Tuning the Conductivity of Polyaniline through Doping by Means of Single Precursor Vapor Phase Infiltration. Adv. Mater. Interfaces 2017, 4, 1600806. [Google Scholar] [CrossRef]
- Wang, W.; Chen, C.; Tollan, C.; Yang, F.; Beltrán, M.; Qin, Y.; Knez, M. Conductive Polymer–Inorganic Hybrid Materials through Synergistic Mutual Doping of the Constituents. ACS Appl. Mater. Interfaces 2017, 9, 27964–27971. [Google Scholar] [CrossRef] [PubMed]
- Hoch, L.B.; He, L.; Qiao, Q.; Liao, K.; Reyes, L.M.; Zhu, Y.; Ozin, G.A. Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO2 Reduction. Chem. Mater. 2016, 28, 4160–4168. [Google Scholar] [CrossRef]
- Cañón, J.; Teplyakov, A.V. XPS characterization of cobalt impregnated SiO2 and γ-Al2O3. Surf. Interface Anal. 2021, 53, 475–481. [Google Scholar] [CrossRef]
- Ko, M.; Kirakosyan, A.; Kim, H.-U.; Seok, H.; Choi, J.; Jeon, N. A new nanoparticle heterostructure strategy with highly tunable morphology via sequential infiltration synthesis. Appl. Surf. Sci. 2022, 593, 153387. [Google Scholar] [CrossRef]
- Tantawy, H.R.; Kengne, B.-A.F.; McIlroy, D.N.; Nguyen, T.; Heo, D.; Qiang, Y.; Aston, D.E. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys. 2015, 118, 175501. [Google Scholar] [CrossRef]
- Song, E.; Choi, J.-W. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomaterials 2013, 3, 498–523. [Google Scholar] [CrossRef]
- Andriianova, A.N.; Biglova, Y.N.; Mustafin, A.G. Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv. 2020, 10, 7468–7491. [Google Scholar] [CrossRef]
- Agbenyeke, R.E.; Jung, E.A.; Park, B.K.; Chung, T.-M.; Kim, C.G.; Han, J.H. Thermal atomic layer deposition of In2O3 thin films using dimethyl(N-ethoxy-2,2-dimethylcarboxylicpropanamide)indium and H2O. Appl. Surf. Sci. 2017, 419, 758–763. [Google Scholar] [CrossRef]
- Maeng, W.J.; Choi, D.-W.; Park, J.; Park, J.-S. Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant. J. Alloys Compd. 2015, 649, 216–221. [Google Scholar] [CrossRef]
- Su, N. Polyaniline-Doped Spherical Polyelectrolyte Brush Nanocomposites with Enhanced Electrical Conductivity, Thermal Stability, and Solubility Property. Polymers 2015, 7, 1599–1616. [Google Scholar] [CrossRef]
- Patra, B.N.; Majhi, D. Removal of Anionic Dyes from Water by Potash Alum Doped Polyaniline: Investigation of Kinetics and Thermodynamic Parameters of Adsorption. J. Phys. Chem. B 2015, 119, 8154–8164. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.-Y.; Phang, S.-W.; Baharum, A. Effects of synthesised polyaniline (PAni) contents on the anti-static properties of PAni-based polylactic acid (PLA) films. RSC Adv. 2020, 10, 39693–39699. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Lin, L.; Jiang, L.; Zhang, Q.; Tong, Y.; Suo, L.; Hu, Y.-s.; Li, H.; Huang, X.; Chen, L. Interface Concentrated-Confinement Suppressing Cathode Dissolution in Water-in-Salt Electrolyte. Adv. Energy Mater. 2020, 10, 2000665. [Google Scholar] [CrossRef]
Raman Shift (cm−1) | Assignment |
---|---|
1610 | C=C stretching vibration of a quinonoid ring |
1560 | N–H bending |
1405 | C–C stretching vibrations in a quinonoid ring |
1350 | C–N+• Radical cation |
1240 | C–N stretching in a benzenoid ring |
1170 | C–H in-plane C–H bending quinonoid ring |
817 | out-of-plane C–H vibration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, J.; Kim, H.-U.; Jeon, N. Key Factors in Enhancing Pseudocapacitive Properties of PANI-InOx Hybrid Thin Films Prepared by Sequential Infiltration Synthesis. Polymers 2023, 15, 2616. https://doi.org/10.3390/polym15122616
Ham J, Kim H-U, Jeon N. Key Factors in Enhancing Pseudocapacitive Properties of PANI-InOx Hybrid Thin Films Prepared by Sequential Infiltration Synthesis. Polymers. 2023; 15(12):2616. https://doi.org/10.3390/polym15122616
Chicago/Turabian StyleHam, Jiwoong, Hyeong-U Kim, and Nari Jeon. 2023. "Key Factors in Enhancing Pseudocapacitive Properties of PANI-InOx Hybrid Thin Films Prepared by Sequential Infiltration Synthesis" Polymers 15, no. 12: 2616. https://doi.org/10.3390/polym15122616
APA StyleHam, J., Kim, H.-U., & Jeon, N. (2023). Key Factors in Enhancing Pseudocapacitive Properties of PANI-InOx Hybrid Thin Films Prepared by Sequential Infiltration Synthesis. Polymers, 15(12), 2616. https://doi.org/10.3390/polym15122616