Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of PEDOT:PSS Films
2.3. Electrochemical Studies
2.4. Morphology and Composition
2.5. Electrochemical Impedance Spectroscopy
2.6. In Situ UV-VIS Spectroelectrochemistry
2.7. Operando Conductance
3. Results
3.1. Cyclic Voltammetry
3.2. Morphology and Composition
3.3. Electrochemical Impedance Spectroscopy
3.4. Operando Conductance
3.5. In situ UV-VIS Spectroelectrochemistry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-Ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12, 481–494. [Google Scholar] [CrossRef]
- Elschner, A.; Kirchmeyer, S.; Lovenich, W.; Merker, U.; Reuter, K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429137389. [Google Scholar]
- Wen, Y.; Xu, J. Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1121–1150. [Google Scholar] [CrossRef]
- Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G. Transparent Graphene/PEDOT–PSS Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells. Electrochem. Commun. 2008, 10, 1555–1558. [Google Scholar] [CrossRef]
- Kim, Y.H.; Sachse, C.; MacHala, M.L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21, 1076–1081. [Google Scholar] [CrossRef]
- Yuan, T.; Li, J.; Wang, S. Composited Film of Poly(3,4-Ethylenedioxythiophene) and Graphene Oxide as Hole Transport Layer in Perovskite Solar Cells. Polymers 2021, 13, 3895. [Google Scholar] [CrossRef]
- De Kok, M.M.; Buechel, M.; Vulto, S.I.E.; Van De Weyer, P.; Meulenkamp, E.A.; De Winter, S.H.P.M.; Mank, A.J.G.; Vorstenbosch, H.J.M.; Weijtens, C.H.L.; Van Elsbergen, V. Modification of PEDOT:PSS as Hole Injection Layer in Polymer LEDs. Phys. Status Solidi Appl. Res. 2004, 201, 1342–1359. [Google Scholar] [CrossRef]
- Udovytska, R.; Chulkin, P.; Wypych-Puszkarz, A.; Jung, J. Three Destinies of Solution-Processable Polymer Light-Emitting Diodes under Long-Time Operation. Polymers 2021, 13, 1853. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Kawase, T.; Friend, R.H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E.P. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science 2000, 290, 2123–2126. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, J.; Katz, H.E.; Fang, F.; Opila, R.L. Promising Thermoelectric Properties of Commercial PEDOT:PSS Materials and Their Bi2Te3 Powder Composites. ACS Appl. Mater. Interfaces 2010, 2, 3170–3178. [Google Scholar] [CrossRef]
- Atoyo, J.; Burton, M.R.; McGettrick, J.; Carnie, M.J. Enhanced Electrical Conductivity and Seebeck Coefficient in PEDOT:PSS via a Two-Step Ionic Liquid and NaBH4 Treatment for Organic Thermoelectrics. Polymers 2020, 12, 559. [Google Scholar] [CrossRef]
- Marks, Z.D.; Glugla, D.; Friedlein, J.T.; Shaheen, S.E.; McLeod, R.R.; Kahook, M.Y.; Nair, D.P. Switchable Diffractive Optics Using Patterned PEDOT:PSS Based Electrochromic Thin-Films. Org. Electron. Phys. Mater. Appl. 2016, 37, 271–279. [Google Scholar] [CrossRef]
- Liu, J.; Agarwal, M.; Varahramyan, K. Glucose Sensor Based on Organic Thin Film Transistor Using Glucose Oxidase and Conducting Polymer. Sens. Actuators B Chem. 2008, 135, 195–199. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Kim, N.; Kee, S.; Lee, S.H.; Lee, B.H.; Kahng, Y.H.; Jo, Y.-R.; Kim, B.-J.; Lee, K. Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization. Adv. Mater. 2014, 26, 2268–2272. [Google Scholar] [CrossRef]
- Ju, D.; Kim, D.; Yook, H.; Han, J.W.; Cho, K. Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation. Adv. Funct. Mater. 2019, 29, 1905590. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.; Ouyang, J. Review on Application of PEDOTs and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. [Google Scholar] [CrossRef]
- Yoon, D.H.; Yoon, S.H.; Ryu, K.-S.; Park, Y.J. PEDOT:PSS as Multi-Functional Composite Material for Enhanced Li-Air-Battery Air Electrodes. Sci. Rep. 2016, 6, 19962. [Google Scholar] [CrossRef]
- Nguyen, V.A.; Kuss, C. Review—Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. J. Electrochem. Soc. 2020, 167, 065501. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, J. Anion Effect on Salt-Induced Conductivity Enhancement of Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Films. Org. Electron. 2010, 11, 1129–1135. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, J. Salt-Induced Charge Screening and Significant Conductivity Enhancement of Conducting Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate). Macromolecules 2009, 42, 4141–4147. [Google Scholar] [CrossRef]
- Zhu, Z.; Song, H.; Xu, J.; Liu, C.; Jiang, Q.; Shi, H. Significant Conductivity Enhancement of PEDOT:PSS Films Treated with Lithium Salt Solutions. J. Mater. Sci. Mater. Electron. 2015, 26, 429–434. [Google Scholar] [CrossRef]
- Jiang, K.; Hong, S.; Tung, S.; Liu, C.-L. Effects of Cation Size on Thermoelectricity of PEDOT:PSS/Ionic Liquid Hybrid Films for Wearable Thermoelectric Generator Application. J. Mater. Chem. A 2022, 10, 18792–18802. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Q.; Xu, W.; Wen, L.; Li, J.; Deng, B.; Zhang, J.; Xu, H.; Liu, W. Anion Size Effect of Ionic Liquids in Tuning the Thermoelectric and Mechanical Properties of PEDOT:PSS Films through a Counterion Exchange Strategy. ACS Appl. Mater. Interfaces 2022, 14, 27911–27921. [Google Scholar] [CrossRef] [PubMed]
- Kee, S.; Kim, N.; Kim, B.S.; Park, S.; Jang, Y.H.; Lee, S.H.; Kim, J.; Kim, J.; Kwon, S.; Lee, K. Controlling Molecular Ordering in Aqueous Conducting Polymers Using Ionic Liquids. Adv. Mater. 2016, 28, 8625–8631. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Frontana-Uribe, B.A.; Ludwigs, S. Electrochemistry of Conducting Polymers—Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef]
- Apraksin, R.V.; Volkov, A.I.; Eliseeva, S.N.; Kondratiev, V.V. Influence of Addition of Lithium Salt Solution into PEDOT:PSS Dispersion on the Electrochemical and Spectroscopic Properties of Film Electrodes. J. Solid State Electrochem. 2017, 21, 3487–3494. [Google Scholar] [CrossRef]
- Hofmeister, F. Zur Lehre von Der Wirkung Der Salze. Arch. Exp. Pathol. Pharmakol. 1888, 25, 1–30. [Google Scholar] [CrossRef]
- Lo Nostro, P.; Ninham, B.W. Hofmeister Phenomena: An Update on Ion Specificity in Biology. Chem. Rev. 2012, 112, 2286–2322. [Google Scholar] [CrossRef]
- López-León, T.; Santander-Ortega, M.J.; Ortega-Vinuesa, J.L.; Bastos-González, D. Hofmeister Effects in Colloidal Systems: Influence of the Surface Nature. J. Phys. Chem. C 2008, 112, 16060–16069. [Google Scholar] [CrossRef]
- Karlsson, C.; Huang, H.; Strømme, M.; Gogoll, A.; Sjödin, M. Ion- and Electron Transport in Pyrrole/Quinone Conducting Redox Polymers Investigated by In Situ Conductivity Methods. Electrochim. Acta 2015, 179, 336–342. [Google Scholar] [CrossRef]
- Dietrich, M.; Heinze, J.; Heywang, G.; Jonas, F. Electrochemical and Spectroscopic Characterization of Polyalkylenedioxythiophenes. J. Electroanal. Chem. 1994, 369, 87–92. [Google Scholar] [CrossRef]
- Łapkowski, M.; Proń, A. Electrochemical Oxidation of Poly(3,4-Ethylenedioxythiophene)—“In Situ” Conductivity and Spectroscopic Investigations. Synth. Met. 2000, 110, 79–83. [Google Scholar] [CrossRef]
- Sharma, P.; Minakshi Sundaram, M.; Watcharatharapong, T.; Laird, D.; Euchner, H.; Ahuja, R. Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO 4 Nanorods with Improved Redox Chemistry. ACS Appl. Mater. Interfaces 2020, 12, 44815–44829. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamental and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 978-0-471-04372-0. [Google Scholar]
- Gasiorowski, J.; Menon, R.; Hingerl, K.; Dachev, M.; Sariciftci, N.S. Surface Morphology, Optical Properties and Conductivity Changes of Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) by Using Additives. Thin Solid Films 2013, 536, 211–215. [Google Scholar] [CrossRef]
- Huang, J.; Miller, P.F.; Wilson, J.S.; de Mello, A.J.; de Mello, J.C.; Bradley, D.D.C. Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-Ethylenedioxythiophene)/Poly(Styrene Sulfonate) Films. Adv. Funct. Mater. 2005, 15, 290–296. [Google Scholar] [CrossRef]
- Alemu Mengistie, D.; Wang, P.C.; Chu, C.W. Effect of Molecular Weight of Additives on the Conductivity of PEDOT:PSS and Efficiency for ITO-Free Organic Solar Cells. J. Mater. Chem. A 2013, 1, 9907–9915. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, K.; Ouyang, J. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Adv. Mater. 2012, 24, 2436–2440. [Google Scholar] [CrossRef]
- Greczynski, G.; Kugler, T.; Keil, M.; Osikowicz, W.; Fahlman, M.; Salaneck, W. Photoelectron Spectroscopy of Thin Films of PEDOT–PSS Conjugated Polymer Blend: A Mini-Review and Some New Results. J. Electron. Spectrosc. Relat. Phenom. 2001, 121, 1–17. [Google Scholar] [CrossRef]
- Bisquert, J.; Belmonte, G.G.; Santiago, F.F.; Ferriols, N.S.; Yamashita, M.; Pereira, E.C. Application of a Distributed Impedance Model in the Analysis of Conducting Polymer Films. Electrochem. Commun. 2000, 2, 601–605. [Google Scholar] [CrossRef]
- Ren, X.; Pickup, P.G. An Impedance Study of Electron Transport and Electron Transfer in Composite Polypyrrole + Polystyrenesulphonate Films. J. Electroanal. Chem. 1997, 420, 251–257. [Google Scholar] [CrossRef]
- Albery, W.J.; Chen, Z.; Horrocks, B.R.; Mount, A.R.; Wilson, P.J.; Bloor, D.; Monkman, A.T.; Elliott, C.M. Spectroscopic and Electrochemical Studies of Charge Transfer in Modified Electrodes. Faraday Discuss. Chem. Soc. 1989, 88, 247. [Google Scholar] [CrossRef]
- Mathias, M.F.; Haas, O. An Alternating Current Impedance Model Including Migration and Redox-Site Interactions at Polymer-Modified Electrodes. J. Phys. Chem. 1992, 96, 3174–3182. [Google Scholar] [CrossRef]
- Apraksin, R.V.; Volosatova, Y.A.; Volkov, A.I.; Vlasov, P.S.; Lukyanov, D.A.; Kulikov, I.R.; Eliseeva, S.N.; Levin, O.V. Electrochemical Synthesis and Characterization of Poly [Ni(CH3Osalen)] with Immobilized Poly(Styrenesulfonate) Anion Dopants. Electrochim. Acta 2021, 368, 137637. [Google Scholar] [CrossRef]
- Zayat, B.; Das, P.; Thompson, B.C.; Narayan, S.R. In Situ Measurement of Ionic and Electronic Conductivities of Conductive Polymers as a Function of Electrochemical Doping in Battery Electrolytes. J. Phys. Chem. C 2021, 125, 7533–7541. [Google Scholar] [CrossRef]
- Rivnay, J.; Inal, S.; Collins, B.A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D.M.; Malliaras, G.G. Structural Control of Mixed Ionic and Electronic Transport in Conducting Polymers. Nat. Commun. 2016, 7, 11287. [Google Scholar] [CrossRef]
- Salinas, G.; Frontana-Uribe, B.A. Analysis of Conjugated Polymers Conductivity by in Situ Electrochemical-Conductance Method. ChemElectroChem 2019, 6, 4105–4117. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in Understanding Structure and Transport Properties of PEDOT-Based Materials: A Critical Review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Dingler, C.; Walter, R.; Gompf, B.; Ludwigs, S. In Situ Monitoring of Optical Constants, Conductivity, and Swelling of PEDOT:PSS from Doped to the Fully Neutral State. Macromolecules 2022, 55, 1600–1608. [Google Scholar] [CrossRef]
- Chen, X.; Inganäs, O. Three-Step Redox in Polythiophenes: Evidence from Electrochemistry at an Ultramicroelectrode. J. Phys. Chem. 1996, 100, 15202–15206. [Google Scholar] [CrossRef]
- Gribkova, O.L.; Iakobson, O.D.; Nekrasov, A.A.; Cabanova, V.A.; Tverskoy, V.A.; Tameev, A.R.; Vannikov, A.V. Ultraviolet-Visible-Near Infrared and Raman Spectroelectrochemistry of Poly(3,4-Ethylenedioxythiophene) Complexes with Sulfonated Polyelectrolytes. The Role of Inter- and Intra-Molecular Interactions in Polyelectrolyte. Electrochim. Acta 2016, 222, 409–420. [Google Scholar] [CrossRef]
- Zozoulenko, I.; Singh, A.; Singh, S.K.; Gueskine, V.; Crispin, X.; Berggren, M. Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT. ACS Appl. Polym. Mater. 2019, 1, 83–94. [Google Scholar] [CrossRef]
- Wieland, M.; Malacrida, C.; Yu, Q.; Schlewitz, C.; Scapinello, L.; Penoni, A.; Ludwigs, S. Conductance and Spectroscopic Mapping of EDOT Polymer Films upon Electrochemical Doping. Flex. Print. Electron. 2020, 5, 014016. [Google Scholar] [CrossRef]
- Gribkova, O.L.; Iakobson, O.D.; Nekrasov, A.A.; Cabanova, V.A.; Tverskoy, V.A.; Vannikov, A.V. The Influence of Polyacid Nature on Poly(3,4-Ethylenedioxythiophene) Electrosynthesis and Its Spectroelectrochemical Properties. J. Solid State Electrochem. 2016, 20, 2991–3001. [Google Scholar] [CrossRef]
- Gregory, K.P.; Wanless, E.J.; Webber, G.B.; Craig, V.S.J.; Page, A.J. The Electrostatic Origins of Specific Ion Effects: Quantifying the Hofmeister Series for Anions. Chem. Sci. 2021, 12, 15007–15015. [Google Scholar] [CrossRef]
- Yang, M.; Digby, Z.A.; Schlenoff, J.B. Precision Doping of Polyelectrolyte Complexes: Insight on the Role of Ions. Macromolecules 2020, 53, 5465–5474. [Google Scholar] [CrossRef]
- Moghaddam, S.Z.; Thormann, E. The Hofmeister Series: Specific Ion Effects in Aqueous Polymer Solutions. J. Colloid Interface Sci. 2019, 555, 615–635. [Google Scholar] [CrossRef]
- Xie, W.J.; Gao, Y.Q. A Simple Theory for the Hofmeister Series. J. Phys. Chem. Lett. 2013, 4, 4247–4252. [Google Scholar] [CrossRef]
- Schlenoff, J.B.; Yang, M.; Digby, Z.A.; Wang, Q. Ion Content of Polyelectrolyte Complex Coacervates and the Donnan Equilibrium. Macromolecules 2019, 52, 9149–9159. [Google Scholar] [CrossRef]
- Fu, J.; Schlenoff, J.B. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. J. Am. Chem. Soc. 2016, 138, 980–990. [Google Scholar] [CrossRef]
- Itoh, K.; Kato, Y.; Honma, Y.; Masunaga, H.; Fujiwara, A.; Iguchi, S.; Sasaki, T. Structural Alternation Correlated to the Conductivity Enhancement of PEDOT:PSS Films by Secondary Doping. J. Phys. Chem. C 2019, 123, 13467–13471. [Google Scholar] [CrossRef]
- Gutierrez-Fernandez, E.; Ezquerra, T.A.; García-Gutiérrez, M.-C. Additive Effect on the Structure of PEDOT:PSS Dispersions and Its Correlation with the Structure and Morphology of Thin Films. Polymers 2021, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Palumbiny, C.M.; Liu, F.; Russell, T.P.; Hexemer, A.; Wang, C.; Müller-Buschbaum, P. The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing. Adv. Mater. 2015, 27, 3391–3397. [Google Scholar] [CrossRef] [PubMed]
- Modarresi, M.; Zozoulenko, I. Why Does Solvent Treatment Increase the Conductivity of PEDOT: PSS? Insight from Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2022, 24, 22073–22082. [Google Scholar] [CrossRef] [PubMed]
- Zozoulenko, I.; Franco-Gonzalez, J.F.; Gueskine, V.; Mehandzhiyski, A.; Modarresi, M.; Rolland, N.; Tybrandt, K. Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective. Macromolecules 2021, 54, 5915–5934. [Google Scholar] [CrossRef]
- Makki, H.; Troisi, A. Morphology of Conducting Polymer Blends at the Interface of Conducting and Insulating Phases: Insight from PEDOT:PSS Atomistic Simulations. J. Mater. Chem. C 2022, 10, 16126–16137. [Google Scholar] [CrossRef]
Additive | OCP, V | Ea, V | Ec, V | C, F g−1 |
---|---|---|---|---|
H2O | 0.1 | −0.3 | −0.4 | 8 |
LiCl | −0.1 | −0.2 | −0.4 | 33 |
NaClO4 | 0.1 | −0.2 | −0.4 | 28 |
NaCl | 0.0 | −0.1 | −0.2 | 9 |
NaNO3 | 0.4 | — | — | 13 |
NaAc | −0.2 | — | — | 7 |
MgCl2 | 0.1 | −0.1 | −0.6 | 29 |
KCl | 0.0 | — | — | 7 |
Additive | ba | bc |
---|---|---|
H2O | 0.91 | 0.87 |
NaClO4 | 0.74 | 0.82 |
NaNO3 | 0.76 | 0.74 |
NaAc | 0.46 | 0.47 |
NaCl | 0.71 | 0.73 |
KCl | 0.63 | 0.66 |
LiCl | 0.81 | 0.91 |
MgCl2 | 0.78 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, A.I.; Apraksin, R.V. Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity? Polymers 2023, 15, 2468. https://doi.org/10.3390/polym15112468
Volkov AI, Apraksin RV. Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity? Polymers. 2023; 15(11):2468. https://doi.org/10.3390/polym15112468
Chicago/Turabian StyleVolkov, Alexey I., and Rostislav V. Apraksin. 2023. "Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity?" Polymers 15, no. 11: 2468. https://doi.org/10.3390/polym15112468
APA StyleVolkov, A. I., & Apraksin, R. V. (2023). Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity? Polymers, 15(11), 2468. https://doi.org/10.3390/polym15112468