One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Conducting Polymers/Silver Composites
2.3. Characterization
2.4. Photocatalytic Reduction of Hexavalent Chromium Ions
2.5. Catalytic Reduction of p-Nitrophenol
3. Results and Discussion
3.1. Oxidation of the Monomers
3.2. Morphology
3.3. Thermogravimetric Analysis
3.4. Silver Content
3.5. FTIR and Raman Spectroscopy
3.6. Photocatalytic Reduction of Hexavalent Chromium Ions
3.7. Catalytic Reduction of p-Nitrophenol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Epstein, A.J. Conducting polymers: Electrical conductivity. In Physical Properties of Polymers Handbook; Springer: Berlin/Heidelberg, Germany, 2007; pp. 725–755. [Google Scholar]
- Inzelt, G.; Inzelt, G. Chemical and electrochemical syntheses of conducting polymers. In Conducting Polymers: A New Era in Electrochemistry; Springer: Berlin/Heidelberg, Germany, 2012; pp. 149–171. [Google Scholar]
- Freund, M.S.; Deore, B.A. Self-Doped Conducting Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Stejskal, J.; Prokeš, J. Conductivity and morphology of polyaniline and polypyrrole prepared in the presence of organic dyes. Synth. Met. 2020, 264, 116373. [Google Scholar] [CrossRef]
- Minisy, I.M.; Bober, P.; Acharya, U.; Trchová, M.; Hromádková, J.; Pfleger, J.; Stejskal, J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer 2019, 174, 11–17. [Google Scholar] [CrossRef]
- Minisy, I.M.; Acharya, U.; Kobera, L.; Trchová, M.; Unterweger, C.; Breitenbach, S.; Brus, J.; Pfleger, J.; Stejskal, J.; Bober, P. Highly conducting 1-D polypyrrole prepared in the presence of safranin. J. Mater. Chem. C 2020, 8, 12140–12147. [Google Scholar] [CrossRef]
- Pringle, J.M.; Winther-Jensen, O.; Lynam, C.; Wallace, G.G.; Forsyth, M.; MacFarlane, D.R. One-Step Synthesis of Conducting Polymer–Noble Metal Nanoparticle Composites using an Ionic Liquid. Adv. Funct. Mater. 2008, 18, 2031–2040. [Google Scholar] [CrossRef]
- Omastová, M.; Mosnáčková, K.; Fedorko, P.; Trchová, M.; Stejskal, J. Polypyrrole/silver composites prepared by single-step synthesis. Synth. Met. 2013, 166, 57–62. [Google Scholar] [CrossRef]
- Blinova, N.V.; Stejskal, J.; Trchova, M.; Sapurina, I.; Ćirić-Marjanović, G. The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer 2009, 50, 50–56. [Google Scholar] [CrossRef]
- Blinova, N.V.; Bober, P.; Hromádková, J.; Trchová, M.; Stejskal, J.; Prokeš, J. Polyaniline–silver composites are prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polym. Int. 2010, 59, 437–446. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y. Preparation of polypyrrole-coated silver nanoparticles by one-step UV-induced polymerization. Mater. Lett. 2005, 59, 2484–2487. [Google Scholar] [CrossRef]
- Muñoz-Rojas, D.; Oró-Solé, J.; Ayyad, O.; Gómez-Romero, P. Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small 2008, 4, 1301–1306. [Google Scholar] [CrossRef]
- Wang, S.; Shi, G. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Mater. Chem. Phys. 2007, 102, 255–259. [Google Scholar] [CrossRef]
- Moreno, K.J.; Moggio, I.; Arias, E.; Llarena, I.; Moya, S.E.; Ziolo, R.F.; Barrientos, H. Silver nanoparticles functionalized in situ with the conjugated polymer (PEDOT: PSS). J. Nanosci. Nanotechnol. 2009, 9, 3987–3992. [Google Scholar] [CrossRef] [PubMed]
- Melendez, R.G.; Moreno, K.J.; Moggio, I.; Arias, E.; Ponce, A.; Llanera, I.; Moya, S.E. On the influence of silver nanoparticles size in the electrical conductivity of PEDOT: PSS. Mater. Sci. Forum 2010, 644, 85–90. [Google Scholar] [CrossRef]
- Cui, Z.; Coletta, C.; Bahry, T.; Marignier, J.L.; Guigner, J.M.; Gervais, M.; Baiz, S.; Goubard, F.; Remita, S. A novel radiation chemistry-based methodology for the synthesis of PEDOT/Ag nanocomposites. Mater. Chem. Front. 2017, 1, 879–892. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, F.F.; Liu, D.D.; Han, G.Z. In situ synthesis of PEDOT: PSS@ AgNPs nanocomposites. Synth. Met. 2017, 230, 1–6. [Google Scholar] [CrossRef]
- Balamurugan, A.; Ho, K.C.; Chen, S.M. One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. Synth. Met. 2009, 159, 2544–2549. [Google Scholar] [CrossRef]
- Balamurugan, A.; Chen, S.M. Silver nanograins incorporated PEDOT modified electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis 2009, 21, 1419–1423. [Google Scholar] [CrossRef]
- Du, J.; Liu, Z.; Han, B.; Li, Z.; Zhang, J.; Huang, Y. One-pot synthesis of the macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous Mesoporous Mater. 2005, 84, 254–260. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Liu, F.; Gong, J.; Qu, L. Synthesis of polyaniline/Ag composite nanospheres through UV rays irradiation method. Mater. Lett. 2009, 63, 467–469. [Google Scholar] [CrossRef]
- De Barros, R.A.; De Azevedo, W.M. Polyaniline/silver nanocomposite preparation under extreme or non-classical conditions. Synth. Met. 2008, 158, 922–926. [Google Scholar] [CrossRef]
- Bober, P.; Stejskal, J.; Trchova, M.; Prokeš, J.; Sapurina, I. Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites. Macromolecules 2010, 43, 10406–10413. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambaye, T.G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol. 2017, 13, 18–23. [Google Scholar] [CrossRef]
- He, T.; Luo, L.; Yang, J.; Liu, Y.; Liu, S.; Zhang, X. Self-healing and high reusability of Au nanoparticles catalyst based on supramolecular hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123954. [Google Scholar] [CrossRef]
- Mane, S.S.; Patil, S.M.; Pawar, K.K.; Salgaonkar, M.D.; Jagdale, P.; Kamble, T.; Agharkar, M. Biogenic synthesized silver nanoparticles decorated polypyrrole nanotubes as promising photocatalyst for methyl violet dye degradation. Mater. Today Proc. 2020, 28, 2311–2317. [Google Scholar] [CrossRef]
- Ghosh, S.; Teillout, A.L.; Floresyona, D.; de Oliveira, P.; Hagège, A.; Remita, H. Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. Int. J. Hydrogen Energy 2015, 40, 4951–4959. [Google Scholar] [CrossRef]
- Riaz, U.; Ashraf, S.M.; Kashyap, J. Role of conducting polymers in enhancing TiO2-based photocatalytic dye degradation: A short review. Polym. Plast. Technol. Eng. 2015, 54, 1850–1870. [Google Scholar] [CrossRef]
- Minisy, I.M.; Salahuddin, N.A.; Ayad, M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021, 203, 105993. [Google Scholar] [CrossRef]
- Minisy, I.M.; Zasońska, B.A.; Petrovský, E.; Veverka, P.; Šeděnková, I.; Hromádková, J.; Bober, P. Poly(p-phenylenediamine)/maghemite composite as highly effective adsorbent for anionic dye removal. React. Funct. Polym. 2020, 146, 104436. [Google Scholar] [CrossRef]
- Taghizadeh, A.; Taghizadeh, M.; Jouyandeh, M.; Yazdi, M.K.; Zarrintaj, P.; Saeb, M.R.; Lima, E.C.; Gupta, V.K. Conductive polymers in water treatment: A review. J. Mol. Liq. 2020, 312, 113447. [Google Scholar] [CrossRef]
- Haleem, A.; Shafiq, A.; Chen, S.Q.; Nazar, M. A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef] [PubMed]
- Rengaraj, S.; Li, X.Z. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere 2007, 66, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Babu, K.F.; Dhandapani, P.; Maruthamuthu, S.; Kulandainathan, M.A. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydr. Polym. 2012, 90, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Zhao, G. One-step synthesis of polypyrrole-Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Mater. Lett. 2007, 61, 2040–2044. [Google Scholar] [CrossRef]
- Safenaz, M.R.; Sheikha, M. Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv. Mater. Phys. Chem. 2012, 2, 19972. [Google Scholar]
- Stejskal, J. Polymers of phenylenediamines. Prog. Polym. Sci. 2015, 41, 1–31. [Google Scholar] [CrossRef]
- Shinde, S.S.; Gund, G.S.; Dubal, D.P.; Jambure, S.B.; Lokhande, C.D. Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim. Acta 2014, 119, 1–10. [Google Scholar] [CrossRef]
- Zhao, Q.; Jamal, R.; Zhang, L.; Wang, M.; Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res. Lett. 2014, 9, 557. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M. Aniline oligomers versus polyaniline. Polym. Int. 2012, 61, 149–336. [Google Scholar] [CrossRef]
- Trchová, M.; Stejskal, J. Resonance Raman spectroscopy of conducting polypyrrole nanotubes: Disordered surface versus ordered body. J. Phys. Chem. A 2018, 122, 9298–9306. [Google Scholar] [CrossRef]
- Garreau, S.; Louam, G.; Lefrant, S.; Buisson, J.P.; Froyer, G. Optical study and vibrational analysis of the poly(3,4-ethylenedioxythiophene) (PEDT). Synth. Met. 1999, 101, 312–313. [Google Scholar] [CrossRef]
- Moraes, B.R.; Campos, N.S.; Izumi, C.M. Surface-enhanced Raman scattering of EDOT and PEDOT on silver and gold nanoparticles. Vib. Spectrosc. 2018, 96, 137–142. [Google Scholar] [CrossRef]
- Minisy, I.M.; Acharya, U.; Veigel, S.; Morávková, Z.; Taboubi, O.; Hodan, J.; Breitenbach, S.; Unterweger, C.; Gindl-Altmutter, W.; Bober, P. Sponge-like polypyrrole–nanofibrillated cellulose aerogels: Synthesis and application. J. Mater. Chem. C 2021, 9, 12615–12623. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Z.; Zeng, G.; Liu, Y.; Shao, B.; Li, Z.; Liu, Y.; Zhang, W.; He, Q. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: A mini review. Environ. Sci. Pollut. Res. 2018, 25, 6158–6174. [Google Scholar] [CrossRef]
- Mahmud, H.N.M.E.; Huq, A.K.O.; Yahya, R.B. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review. RSC Adv. 2016, 6, 14778–14791. [Google Scholar] [CrossRef]
- Sulowska, A.; Borzyszkowska, A.F.; Cysewska, K.; Siwińska-Ciesielczyk, K.; Nikiforow, K.; Trykowski, G.; Zielińska-Jurek, A. The effect of PEDOT morphology on hexavalent chromium reduction over 2D TiO2/PEDOT photocatalyst under UV–vis light. Mater. Chem. Phys. 2023, 299, 127430. [Google Scholar] [CrossRef]
- Sumi, M.B.; Devadiga, A.; Shetty, K.V.; Saidutta, M.B. Solar photocatalytically active, engineered silver nanoparticle synthesis using aqueous extract of mesocarp of Cocos nucifera (Red Spicata Dwarf). J. Exp. Nanosci. 2017, 12, 14–32. [Google Scholar] [CrossRef]
- Bu, Y.; Chen, Z. Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light. ACS Appl. Mater. Interfaces 2014, 6, 17589–17598. [Google Scholar] [CrossRef]
- Ngo, A.B.; Nguyen, H.L.; Hollmann, D. Critical assessment of the photocatalytic reduction of Cr (VI) over Au/TiO2. Catalysts 2018, 8, 606. [Google Scholar] [CrossRef]
- Bhatti, Z.I.; Toda, H.; Furukawa, K. p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Res. 2002, 36, 1135–1142. [Google Scholar] [CrossRef]
- Guo, P.; Tang, L.; Tang, J.; Zeng, G.; Huang, B.; Dong, H.; Zhang, Y.; Zhou, Y.; Deng, Y.; Ma, L.; et al. Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J. Colloid Interface Sci. 2016, 469, 78–85. [Google Scholar] [CrossRef]
- Kundu, S.; Lau, S.; Liang, H. Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J. Phys. Chem. C 2009, 113, 5150–5156. [Google Scholar] [CrossRef]
- Haleem, A.; Chen, J.; Guo, X.X.; Wang, J.Y.; Li, H.J.; Li, P.Y.; Chen, S.Q.; He, W.D. Hybrid cryogels composed of P (NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol. Polymer 2020, 193, 122352. [Google Scholar] [CrossRef]
- Zhou, Q.; Qian, G.; Li, Y.; Zhao, G.; Chao, Y.; Zheng, J. Two-dimensional assembly of silver nanoparticles for catalytic reduction of 4-nitroaniline. Thin Solid Film. 2008, 516, 953–956. [Google Scholar] [CrossRef]
- Celebioglu, A.; Ranjith, K.S.; Eren, H.; Biyikli, N.; Uyar, T. Surface decoration of Pt nanoparticles via ALD with TiO2 protective layer on polymeric nanofibers as flexible and reusable heterogeneous nanocatalysts. Sci. Rep. 2017, 7, 13401. [Google Scholar] [CrossRef] [PubMed]
Composite | Yield, g * | |
---|---|---|
Absence of p-PDA | Presence of p-PDA | |
PANI/Ag | No yield | 7.03 |
PEDOT/Ag | 4.58 | 7.66 |
PPy/Ag | 6.89 | 6.88 |
Composite | Ag, wt% | r | ||
---|---|---|---|---|
SEM/EDX | TGA | Ash Analysis | ||
PANI/Ag | 49.5 | 72.5 | 71.1 | 0.96 |
PEDOT/Ag | 45.2 | 69.1 | 68.5 | 1.05 |
PPy/Ag | 20.0 | 80.3 | 77.4 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minisy, I.M.; Taboubi, O.; Hromádková, J. One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol. Polymers 2023, 15, 2366. https://doi.org/10.3390/polym15102366
Minisy IM, Taboubi O, Hromádková J. One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol. Polymers. 2023; 15(10):2366. https://doi.org/10.3390/polym15102366
Chicago/Turabian StyleMinisy, Islam M., Oumayma Taboubi, and Jiřina Hromádková. 2023. "One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol" Polymers 15, no. 10: 2366. https://doi.org/10.3390/polym15102366
APA StyleMinisy, I. M., Taboubi, O., & Hromádková, J. (2023). One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol. Polymers, 15(10), 2366. https://doi.org/10.3390/polym15102366