Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CuMgAlTi-R400
2.3. Photodegradation Experiments
2.4. Characterization
3. Results
3.1. MP Characterization
3.2. Structure and Characterization of CuMgAlTi-R400 Photocatalysts
3.3. Photocatalytic Degradation Tests
3.3.1. MP Morphology Analysis
3.3.2. FTIR Spectroscopic Analysis
3.3.3. GC–MS Analysis
3.3.4. Reaction Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zhang, Y.; Zhu, Y.; Song, B.; Ren, X. Recent advances in toxicological research of nanoplastics in the environment: A review. Environ. Pollut. 2019, 252, 511–521. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Abrantes, N.; Gonçalves, F.J.M.; Nogueira, H.; Marques, J.C.; Gonçalves, A.M.M. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci. Total Environ. 2018, 633, 1549–1559. [Google Scholar] [CrossRef]
- Richard, C.T.; Ylva, O.; Richard, P.M.; Anthony, D.; Steven, J.R.; Anthony, W.G.J.; Daniel, M.; Andrea, E.R. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Denisse, V.A.; Camila, A.M.; Montserrat, L.V.; Francisco, V.J.; Manuel, H.J.; Cristina, S.; Iveth, C.E. The Role of the Reactive Species Involved in the Photocatalytic Degradation of HDPE Microplastics Using C, N-TiO2 Powders. Polymers 2021, 13, 999. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Q.-S.; Luo, T.-Y.; Wu, R.-L.; Wei, W.; Ni, B.-J. Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chem. Eng. J. 2021, 416, 129123. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, P.; Wu, X.; Shi, H.; Huang, H.; Wang, H.; Gao, S. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics. Water Res. 2021, 195, 116980. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Ma, B.; Xue, W.; Ding, Y.; Hu, C.; Liu, H.; Qu, J. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J. Environ. Sci. 2019, 78, 267–275. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution—Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wei, R.; Cui, Q.; Bornscheuer, U.T.; Liu, Y. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb. Biotechnol. 2021, 14, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Nabi, I.; Bacha, A.; Li, K.; Cheng, H.; Wang, T.; Liu, Y.; Ajmal, S.; Yang, Y.; Feng, Y.; Zhang, L. Complete Photocatalytic Mineralization of Microplastic on TiO2 Nanoparticle Film. iScience 2020, 23, 101326. [Google Scholar] [CrossRef]
- Sol, D.; Laca, A.; Laca, A.; Díaz, M. Approaching the environmental problem of microplastics: Importance of WWTP treatments. Sci. Total Environ. 2020, 740, 140016. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, N.D.O.; Busquets, R.; Campos, L.C. Insights into the removal of microplastics and microfibres by Advanced Oxidation Processes. Sci. Total Environ. 2022, 861, 160665. [Google Scholar] [CrossRef]
- Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceram. Int. 2018, 45, 9618–9624. [Google Scholar] [CrossRef]
- Ebrahimbabaie, P.; Yousefi, K.; Pichtel, J. Photocatalytic and biological technologies for elimination of microplastics in water: Current status. Sci. Total Environ. 2022, 806, 150603. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Iodide removal using LDH technology. Chem. Eng. J. 2016, 296, 300–309. [Google Scholar] [CrossRef]
- Wiyantoko, B.; Kurniawati, P.; Purbaningtias, T.E.; Fatimah, I. Synthesis and Characterization of Hydrotalcite at Different Mg/Al Molar Ratios. Procedia Chem. 2015, 17, 21–26. [Google Scholar] [CrossRef]
- Peng, G.; Xiang, M.; Wang, W.; Su, Z.; Liu, H.; Chen, Y.; Zhang, P. Engineering 3D graphene-like carbon-assembled layered double oxide for efficient microplastic removal in a wide pH range. J. Hazard. Mater. 2022, 433, 128672. [Google Scholar] [CrossRef]
- Tiwari, E.; Singh, N.; Khandelwal, N.; Monikh, F.A.; Darbha, G.K. Application of Zn/Al layered double hydroxides for the removal of nano-scale plastic debris from aqueous systems. J. Hazard. Mater. 2020, 397, 122769. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Lu, J.; Wei, M.; Ma, J.; Li, H.; He, J.; Evans, D.G.; Duan, X. Theoretical study of the hexahydrated metal cations for the understanding of their template effects in the construction of layered double hydroxides. J. Mol. Struct. 2008, 866, 34–45. [Google Scholar] [CrossRef]
- Sekhar, V.C.; Nampoothiri, K.M.; Mohan, A.J.; Nair, N.R.; Bhaskar, T.; Pandey, A. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J. Hazard. Mater. 2016, 318, 347–354. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Felczak, A.; Szalla, A. Studies of photochemical transformations in polystyrene and styrene–maleic anhydride copolymer. Polym. Degrad. Stabil. 2008, 93, 1259–1266. [Google Scholar] [CrossRef]
- Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, D.; Zhou, W.; Liao, S.; Cui, J.; Wu, K.; Hamilton, D. Solid-phase photocatalytic degradation of polystyrene plastic with goethite modified by boron under UV–vis light irradiation. Appl. Surf. Sci. 2010, 256, 2546–2551. [Google Scholar] [CrossRef]
- Uogintė, I.; Pleskytė, S.; Skapas, M.; Stanionytė, S.; Lujanienė, G. Degradation and optimization of microplastic in aqueous solutions with graphene oxide-based nanomaterials. Int. J. Environ. Sci. Technol. 2022. [CrossRef]
- Kannan, S.; Dubey, A.; Knozinger, H. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. J. Catal. 2005, 231, 381–392. [Google Scholar] [CrossRef]
- Seftel, E.M.; Mertens, M.; Cool, P. The influence of the Ti4+ location on the formation of self-assembled nanocomposite systems based on TiO2 and Mg/Al-LDHs with photocatalytic properties. Appl. Catal. B Environ. 2013, 134–135, 274–285. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Kazeminezhad, I.; Jaafarzadeh, N.; Ahmadi, M.; Ramezani, Z. Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: Role of carbon doped TiO2 and anatase/rutile ratio. Catal. Today 2020, 348, 277–289. [Google Scholar] [CrossRef]
- Costa, F.R.; Leuteritz, A.; Wagenknecht, U.; Jehnichen, D.; Haeussler, L.; Heinrich, G. Intercalation of Mg-Al layered double hydroxide by anionic surfactants: Preparation and characterization. Appl. Clay Sci. 2008, 38, 153–164. [Google Scholar] [CrossRef]
- Saber, O.; Tagaya, H. Preparation of a new nano-layered materials and organic-inorganic nano-hybrid materials, Zn-Si LDH. J. Porous Mat. 2009, 16, 81–89. [Google Scholar] [CrossRef]
- Lu, R.; Xu, X.; Chang, J.; Zhu, Y.; Xu, S.; Zhang, F. Improvement of photocatalytic activity of TiO2 nanoparticles on selectively reconstructed layered double hydroxide. Appl. Catal. B-Environ. 2012, 111, 389–396. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S.; Yu, J.; Shu, Z. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. J. Hazard. Mater. 2011, 192, 1114–1121. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi (b) 1966, 15, 627–637. [Google Scholar] [CrossRef]
- ter Halle, A.; Ladirat, L.; Martignac, M.; Mingotaud, A.F.; Boyron, O.; Perez, E. To what extent are microplastics from the open ocean weathered? Environ. Pollut. 2017, 227, 167–174. [Google Scholar] [CrossRef]
- Abdusalam, U.; Giraldo, M.H.; Mohamed, A.; Wael, H.; Joydeep, D. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2021, 406, 124299. [Google Scholar] [CrossRef]
- Llorente-García, B.E.; Hernández-López, J.M.; Zaldívar-Cadena, A.A.; Siligardi, C.; Cedillo-González, E.I. First Insights into Photocatalytic Degradation of HDPE and LDPE Microplastics by a Mesoporous N–TiO2 Coating: Effect of Size and Shape of Microplastics. Coatings 2020, 10, 658. [Google Scholar] [CrossRef]
- Jiang, R.; Lu, G.; Yan, Z.; Liu, J.; Wu, D.; Wang, Y. Microplastic degradation by hydroxy-rich bismuth oxychloride. J. Hazard. Mater. 2021, 405, 124247. [Google Scholar] [CrossRef]
- Lal, S.D.; Jose, T.S.; Rajesh, C. Solid-phase photodegradation of polystyrene by nano TiO2 under ultraviolet radiation. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100229. [Google Scholar] [CrossRef]
- Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. [Google Scholar] [CrossRef]
- Hu, J.; Lim, F.Y.; Hu, J. Ozonation facilitates the aging and mineralization of polyethylene microplastics from water: Behavior, mechanisms, and pathways. Sci. Total Environ. 2023, 866, 161290. [Google Scholar] [CrossRef] [PubMed]
- Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; Rivera De La Rosa, J.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process. J. Hazard. Mater. 2020, 395, 122632. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, H.; Wu, J.; Wu, X.; Shi, Y.; Yang, Z.; Huang, K.; Guo, X.; Gao, S. Polystyrene microplastics accelerated photodegradation of co-existed polypropylene via photosensitization of polymer itself and released organic compounds. Water Res. 2022, 214, 118209. [Google Scholar] [CrossRef]
- Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Enhanced photocatalytic degradation and H2H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671. [Google Scholar] [CrossRef]
- Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. Enhanced photocatalytic degradation and H2 evolution performance of NCDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly. J. Mater. Sci. Technol. 2022, 114, 222–232. [Google Scholar] [CrossRef]
- Ceccarini, A.; Corti, A.; Erba, F.; Modugno, F.; La Nasa, J.; Bianchi, S.; Castelvetro, V. The Hidden Microplastics: New Insights and Figures from the Thorough Separation and Characterization of Microplastics and of Their Degradation Byproducts in Coastal Sediments. Environ. Sci. Technol. 2018, 52, 5634–5643. [Google Scholar] [CrossRef]
Exposure Time (h) | Particle Size (μm) | Particle Size Distribution | Optical Micrograph Image |
---|---|---|---|
0 | 39.0 ± 5.6 | ||
50 | 35.3 ± 5.0 | ||
125 | 29.5 ± 6.1 | ||
200 | 21.7 ± 7.1 | ||
300 | 17.9 ± 5.9 |
Exposure Time (h) | Particle Size (μm) | Particle Size Distribution | Optical Micrograph Image |
---|---|---|---|
0 | 25.9 ± 3.6 | ||
50 | 24.2 ± 4.8 | ||
125 | 21.1 ± 6.0 | ||
200 | 17.2 ± 7.2 |
Photocatalysts | Microplastic Type | Reaction Conditions | Removal Efficiency | Ref. |
---|---|---|---|---|
ZnO | PP (154.8 ± 1.4 µm) | 120 W (ES- HALOGEN) (60 mW/cm2), Reaction time = 456 h | 65% | [37] |
N/TiO2 | PE (382 ± 154 µm) | 50 W visible LED lamp (400–800 nm); Reaction time = 50 h | 4.7% | [38] |
BiOCl-X | PE (200–250 μm) | 250 W Xe lamp (λ > 420 nm), Reaction time = 5 h | 5.38% | [39] |
CuMgAlTi-R400 | PS (39.0 ± 5.6μm) | 50 W Xe lamp (λ = 320–780 nm), Reaction time = 300 h | 54.2% | This work |
CuMgAlTi-R400 | PE (25.9 ± 3.6μm) | 50 W Xe lamp (λ = 320–780 nm), Reaction time = 200 h | 33.7% | This work |
Compound | Structure | Molecular Formula | Molecular Mass |
---|---|---|---|
2,4a,8,8-Tetramethyldecahydrocyclopropa[d]naphthalen | C15H26 | 206.2 | |
2-Dodecen-1-ylsuccinic anhydride | C16H26O3 | 266.2 | |
Nona-2,3-dienoic acid, ethyl ester | C11H18O2 | 182.1 | |
Ppropiolic acid, 3-(1-hydroxy-2-isopropyl-5-methylcyclohexyl)- | C13H20O3 | 224.1 | |
2-Isopropyl-5-methylhex-2-enal | C10H18O | 154.1 |
Compound | Structure | Molecular Formula | Molecular Mass |
---|---|---|---|
Cyclopropane, (1-methyl-1,2-propadienyl)- | C7H10 | 94.1 | |
Dodecane, 2,6,10-trimethyl- | C15H32 | 212.2 | |
1-Octanol, 2-butyl- | C12H26O | 186.2 | |
2-Pentanone, 5-(1,2-propadienyloxy)- | C8H12O2 | 140.1 | |
Dodecane | C12H26 | 170.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Yin, M.; Ren, H.; Qin, Y.; Wang, W.; Wang, Q.; Li, X. Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation. Polymers 2023, 15, 2347. https://doi.org/10.3390/polym15102347
Jiang S, Yin M, Ren H, Qin Y, Wang W, Wang Q, Li X. Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation. Polymers. 2023; 15(10):2347. https://doi.org/10.3390/polym15102347
Chicago/Turabian StyleJiang, Shengyun, Mingshan Yin, Huixue Ren, Yaping Qin, Weiliang Wang, Quanyong Wang, and Xuemei Li. 2023. "Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation" Polymers 15, no. 10: 2347. https://doi.org/10.3390/polym15102347
APA StyleJiang, S., Yin, M., Ren, H., Qin, Y., Wang, W., Wang, Q., & Li, X. (2023). Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation. Polymers, 15(10), 2347. https://doi.org/10.3390/polym15102347