The Pivotal Role of Benzimidazole in Improving the Thermal and Dielectric Performance of Upilex-Type Polyimide
Abstract
:1. Introduction
2. Materials and Characterization
2.1. Materials
2.2. Characterization
2.3. Polyimide Preparation
3. Results and Discussion
3.1. Polyimide Characterization
3.2. Thermal Properties
3.3. Mechanical Properties
3.4. Dielectric Properties
3.5. Water Absorption Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, J.S.; Wang, Z.L.; Qu, H.W.; Cang, D.Y. Flexible bandpass filter on polyimide substrate. J. Mater. Sci. Mater. Electron. 2021, 32, 25137–25148. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Z.; Qu, H.; Cang, D. The flexible bandpass filter on polyimide substrate for wireless communications systems. Semicond. Sci. Technol. 2021, 36, 125008. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, M.; Zhao, K.; Zhang, Q.; Deng, M.; Huang, F.; Kang, L.; Hu, Z.; Zhang, J.; Li, W. Flexible organic thin-film transistors with high mechanical stability on polyimide substrate by chemically plated silver electrodes. IEEE Trans. Electron Devices 2021, 68, 5120–5126. [Google Scholar] [CrossRef]
- Lee, S.; Cho, Y.J.; Han, B.; Lee, J.; Choi, S.; Kang, T.; Chu, H.Y.; Kwag, J.; Kim, S.C.; Jang, J. Poly-Si thin-film transistors on polyimide substrate for 1 mm diameter rollable active-matrix organic light-emitting diode display. Adv. Eng. Mater. 2021, 24, 2100910. [Google Scholar] [CrossRef]
- Shi, S.; Yao, L.; Ma, P.; Jiao, Y.; Zheng, X.; Ning, D.; Chen, M.; Sui, F.; Liu, H.; Yang, C.; et al. Recent progress in the high-temperature-resistant PI substrate with low CTE for CIGS thin-film solar cells. Mater. Today Energy 2021, 20, 100640. [Google Scholar] [CrossRef]
- Kubo, Y.; Sonohara, Y.; Uemura, S. Changes in the chemical state of metallic Cr during deposition on a polyimide substrate: Full soft XPS and ToF-SIMS depth profiles. Appl. Surf. Sci. 2021, 553, 149437. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, W.; Zhou, X.; Peng, P. Thermal properties of laser-fabricated copper-arbon composite films on polyimide substrate. Adv. Eng. Mater. 2021, 23, 2100623. [Google Scholar] [CrossRef]
- Powell, M.J. The physics of amorphous-silicon thin-film transistors. IEEE Trans. Electron Devices 1989, 36, 2753–2763. [Google Scholar] [CrossRef]
- Dine-Hart, R.A.; Wright, W.W. Preparation and fabrication of aromatic polyimides. J. Appl. Polym. Sci. 1967, 11, 609–627. [Google Scholar] [CrossRef]
- Liu, T.Q.; Zheng, F.; Ding, T.M.; Zhang, S.Y.; Lu, Q. Design and synthesis of a novel quinoxaline diamine and its polyimides with high-Tg and red color. Polymer 2019, 179, 121612. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Jing, Z.; Li, J.; Zhou, L.; Zhang, H. Synthesis and characterization of porous polyimide films containing benzimidazole moieties. High Perform. Polym. 2017, 29, 869–876. [Google Scholar] [CrossRef]
- Song, G.; Zhang, X.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C.; Dang, G. Negative in-plane CTE of benzimidazole-based polyimide film and its thermal expansion behavior. Polymer 2014, 55, 3242–3246. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, H.; Dang, G.; Chen, C. Synthesis and characterization of thermally stable, high-modulus polyimides containing benzimidazole moieties. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2024–2031. [Google Scholar] [CrossRef]
- Sidra, L.R.; Chen, G.; Li, C.; Mushtaq, N.; Ma, K.; Fang, X. Processable, high Tg polyimides from unsymmetrical diamines containing 4-phenoxy aniline and benzimidazole moieties. Polymer 2018, 148, 228–238. [Google Scholar] [CrossRef]
- Sidra, L.R.; Chen, G.; Mushtaq, N.; Xu, L.; Chen, X.; Li, Y.; Fang, X. High Tg, melt processable copolyimides based on isomeric 3,3’and 4,4’-hydroquinone diphthalic anhydride (HQDPA). Polymer 2018, 136, 205–214. [Google Scholar] [CrossRef]
- Lian, M.; Zheng, F.; Lu, X.; Lu, Q. Tuning the heat resistance properties of polyimides by intermolecular interaction strengthening for flexible substrate application. Polymer 2019, 173, 205–214. [Google Scholar] [CrossRef]
- Yue, H.; Kong, L.; Wang, B.; Yuan, Q.; Zhang, Y.; Du, H.; Dong, Y.; Zhao, J. Synthesis and characterization of novel D-A type neutral blue electrochromic polymers containing pyrrole[3-c]pyrrole-1,4-diketone as the acceptor units and the aromatics donor units with different planar structures. Polymers 2019, 11, 2023. [Google Scholar] [CrossRef]
- Hong, K.; Yu, H.K.; Lee, I.; Kim, S.; Kim, Y.; Kim, K.; Lee, J.L. Flexible top-emitting organic light emitting diodes with a functional dielectric reflector on a metal foil substrate. RSC Adv. 2018, 8, 26156–26160. [Google Scholar] [CrossRef]
- Chen, H.; Dai, F.; Yan, X.; Chen, C.; Qian, G.; Yu, Y. Novel semi-N-methyl substituted bisbenzimidazole based polyimide films with low coefficient of thermal expansion and high Tg. J. Polym. Res. 2021, 28, 414. [Google Scholar] [CrossRef]
- Tao, L.; Yang, H.; Liu, J.; Fan, L.; Yang, S. Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides. Polymer 2009, 50, 6009–6018. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, S.; Zheng, F.; Lu, Q. Intrinsically black polyimide with retained insulation and thermal properties: A black anthraquinone derivative capable of linear copolymerization. Macromolecules 2021, 54, 9307–9318. [Google Scholar] [CrossRef]
- Snels, M.; Beil, A.; Hollenstein, H.; Quack, M. Excited vibrational states of benzene: High resolution FTIR spectra and analysis of some out-of-plane vibrational fundamentals of C6H5D. Chem. Phys. 1997, 225, 107–130. [Google Scholar] [CrossRef]
- Feng, Y.; Luo, L.B.; Huang, J.; Li, K.; Li, B.; Wang, H.; Liu, X. Effect of molecular rigidity and hydrogen bond interaction on mechanical properties of polyimide fibers. J. Appl. Polym. Sci. 2016, 133, 43677. [Google Scholar] [CrossRef]
- Wakita, J.; Jin, S.; Shin, T.J.; Ree, M.; Ando, S. Analysis of molecular aggregation structures of fully aromatic and aemialiphatic polyimide films with synchrotron grazing incidence wide-angle X-ray scattering. Macromolecules 2010, 43, 1930–1941. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Qin, X.; Lv, Y.; Huang, Y.; Yang, Q.; Li, G.; Kong, M. Property evolution and molecular mechanisms of aluminized colorless transparent polyimide under space ultraviolet irradiation. Polym. Degrad. Stab. 2022, 199, 109915. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Sun, W.; Lei, X.; Yao, P. Synthesis and gas permeation properties of hyperbranched polyimides membranes from a novel (A2+B2B’+B2)-type method. J. Membr. Sci. 2014, 450, 138–146. [Google Scholar] [CrossRef]
- Lei, X.; Qiao, M.; Tian, L.; Chen, Y.; Zhang, Q. Tunable permittivity in high-performance hyperbranched polyimide films by adjusting backbone rigidity. J. Phys. Chem. C 2016, 120, 2548–2561. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, H.; Chang, J.; Ge, Q.; Cao, L.; Wu, D. High-performance fibers based on copolyimides containing benzimidazole and ether moieties: Molecular packing, morphology, hydrogen-bonding interactions and properties. Polym. Eng. Sci. 2015, 55, 2615–2625. [Google Scholar] [CrossRef]
- Yu, X.; Liang, W.; Cao, J.; Wu, D. Mixed rigid and flexible component design for high-performance polyimide films. Polymers 2017, 9, 451. [Google Scholar] [CrossRef]
- Yuan, S.; Guo, X.; Aili, D.; Pan, C.; Li, Q.; Fang, J. Poly(imide benzimidazole)s for high temperature polymer electrolyte membrane fuel cells. J. Membr. Sci. 2014, 454, 351–358. [Google Scholar] [CrossRef]
- Chang, J.; Liu, W.; Zhang, M.; Cao, L.; Ge, Q.; Niu, H.; Sui, G.; Wu, D. Structures and properties of polyimide fibers containing fluorine groups. RSC Adv. 2015, 5, 71425–71432. [Google Scholar] [CrossRef]
- UrRehman, S.; Song, G.; Jia, H.; Zhou, H.; Zhao, X.; Dang, G.; Chen, C. Synthesis and characterization of benzimidazole-based low CTE block copolyimides. J. Appl. Polym. Sci. 2013, 129, 2561–2570. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Yao, Y.; Jing, Z.; Zhou, L.; Ma, Z. Synthesis and properties of polyimide foams containing benzimidazole units. RSC Adv. 2016, 6, 60094–60100. [Google Scholar] [CrossRef]
- Slonimskii, G.L.; Askadskii, A.A.; Kitaigorodskii, A.I. The packing of polymer molecules. Polym. Sci. U.S.S.R. 1970, 12, 556–577. [Google Scholar] [CrossRef]
- Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Sazanov, Y.N.; Florinsky, F.S.; Koton, M.M. Investigation of thermal and thermooxidative degradation of some polyimides containing oxyphenylene groups in the main chain. Eur. Polym. J. 1979, 15, 781–786. [Google Scholar] [CrossRef]
- Varma, I.K.; Goel, R.N.; Varma, D.S. Effect of structure on the thermal stability of polyimides. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 703–713. [Google Scholar] [CrossRef]
- Musto, P.; Karasz, F.E.; MacKnight, W.J. Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend. Polymer 1993, 34, 2934–2945. [Google Scholar] [CrossRef]
- Lassettre, E.N. The hydrogen bond and association. Chem. Rev. 1937, 20, 259–303. [Google Scholar] [CrossRef]
- Zhuang, Y.; Gu, Y. Novel poly(benzoxazole-etherimide) copolymer for two-layer flexible copper-clad laminate. J. Macromol. Sci. Part B Phys. 2012, 51, 2157–2170. [Google Scholar] [CrossRef]
- Jou, J.H.; Huang, P.T. Effect of thermal curing on the structures and properties of aromatic polyimide films. Macromolecules 1991, 24, 3796–3803. [Google Scholar] [CrossRef]
- Hasegawa, M.; Matano, T.; Shindo, Y.; Sugimura, T. Spontaneous molecular orientation of polyimides induced by thermal imidization. 2. In-plane orientation. Macromolecules 1996, 29, 7897–7909. [Google Scholar] [CrossRef]
- Hasegawa, M.; Okuda, K.; Horimoto, M.; Shindo, Y.; Yokota, R.; Kochi, M. Spontaneous molecular orientation of polyimides induced by thermal imidization. 3. Component chain orientation in binary polyimide blends. Macromolecules 1997, 30, 5745–5752. [Google Scholar] [CrossRef]
- Tang, Y.; Yao, H.; Xu, W.; Zhu, L.; Zhang, Y.; Jiang, Z. Side-chain-type High Dielectric-constant Dipolar Polyimides with Temperature Resistance. Macromol. Rapid Commun. 2023, 44, 2200639. [Google Scholar] [CrossRef]
- Tong, H.; Ahmad, A.; Fu, J.; Xu, H.; Fan, T.; Hou, Y.; Xu, J. Revealing the correlation between molecular structure and dielectric properties of carbonyl-containing polyimide dielectrics. J. Appl. Polym. Sci. 2019, 136, 47883. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit. Polymer 2005, 46, 5903–5908. [Google Scholar] [CrossRef]
- Goto, K.; Kakuta, M.; Inoue, Y.; Matsubara, M. Low dielectric and thermal stable polyimides with fluorene structure. J. Photopolym. Sci. Technol. 2000, 13, 313–315. [Google Scholar] [CrossRef]
- Goto, K.; Inoue, Y.; Matsubara, M. Low dielectric and thermally stable polyimides with fluorene structure (II) relationship between chemical structure and dielectric constant. J. Photopolym. Sci. Technol. 2001, 14, 33–36. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, X.; Gu, Y. Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers. Polym. Chem. 2012, 3, 1517–1525. [Google Scholar] [CrossRef]
- Yan, X.; Dai, F.; Ke, Z.; Yan, K.; Chen, C.; Qian, G.; Li, H. Synthesis of Colorless Polyimides with High Tg from Asymmetric Twisted Benzimidazole Diamines. Eur. Polym. J. 2022, 164, 110975. [Google Scholar] [CrossRef]
- Lian, M.; Lu, X.; Lu, Q. Synthesis of superheat-resistant polyimides with high Tg and low coefficient of thermal expansion by introduction of strong intermolecular interaction. Macromolecules 2018, 51, 10127–10135. [Google Scholar] [CrossRef]
- Ou, X.; Chen, S.; Lu, X.; Lu, Q. Enhancement of Thermal Conductivity and Dimensional Stability of Polyimide/Boron Nitride Films Through Mechanochemistry. Compos.Commun. 2021, 23, 100549. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q. Synthesis of poly(benzobisoxazole-co-imide) and fabrication of high-performance fibers. Polymer 2017, 133, 50–59. [Google Scholar] [CrossRef]
PIs | σmax a (MPa) | E b (GPa) | εb c (%) | Dielectric Loss (×10−3) |
---|---|---|---|---|
BR-50 | 118.9 ± 9.8 | 2.7 ± 0.6 | 4.3 ± 0.7 | 13.2 |
BR-30 | 128.1 ± 8.2 | 3.1 ± 0.4 | 6.0 ± 1.3 | 8.2 |
BR-10 | 136.0 ± 9.5 | 2.9 ± 0.6 | 10.4 ± 2.5 | 2.8 |
UR | 132.9 ± 9.5 | 3.0 ± 0.5 | 11.7 ± 1.8 | 12.9 |
PR-10 | 133.4 ± 8.6 | 3.1 ± 0.3 | 10.8 ± 1.2 | 4.1 |
PR-30 | 137.7 ± 10.7 | 3.4 ± 0.5 | 9.3 ± 0.9 | 1.7 |
PR-50 | 148.6 ± 7.8 | 4.1 ± 0.7 | 6.2 ± 0.7 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, M.; Zhao, F.; Liu, J.; Tong, F.; Meng, L.; Yang, Y.; Zheng, F. The Pivotal Role of Benzimidazole in Improving the Thermal and Dielectric Performance of Upilex-Type Polyimide. Polymers 2023, 15, 2343. https://doi.org/10.3390/polym15102343
Lian M, Zhao F, Liu J, Tong F, Meng L, Yang Y, Zheng F. The Pivotal Role of Benzimidazole in Improving the Thermal and Dielectric Performance of Upilex-Type Polyimide. Polymers. 2023; 15(10):2343. https://doi.org/10.3390/polym15102343
Chicago/Turabian StyleLian, Meng, Fei Zhao, Jun Liu, Faqin Tong, Lingbin Meng, Yongqi Yang, and Feng Zheng. 2023. "The Pivotal Role of Benzimidazole in Improving the Thermal and Dielectric Performance of Upilex-Type Polyimide" Polymers 15, no. 10: 2343. https://doi.org/10.3390/polym15102343
APA StyleLian, M., Zhao, F., Liu, J., Tong, F., Meng, L., Yang, Y., & Zheng, F. (2023). The Pivotal Role of Benzimidazole in Improving the Thermal and Dielectric Performance of Upilex-Type Polyimide. Polymers, 15(10), 2343. https://doi.org/10.3390/polym15102343