The Effect of Transparent Conducting Oxide Films on WO3-Based Electrochromic Devices with Conducting Polymer Electrolytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Fabrication of WO3 Films on Different TCOs
2.3. The Study of the EC Properties of WO3-Based ECDs
3. Results and Discussions
3.1. Structural Properties of WO3 Films with Various TCOs
3.2. EC Performance of WO3-Based ECDs with Various TCOs
3.3. EC Mechanism of WO3-Based ECDs with Conducting Polymer Electrolyte
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Oxide Electrochromics: An Introduction to Devices and Materials. Sol. Energy Mater. Sol. Cells 2012, 99, 1–13. [Google Scholar] [CrossRef]
- Chu, C.H.; Wu, H.W.; Huang, J.L. Novel WO3-Based Electrochromic Device for High Optical Modulation and Infrared Suppression. IEEE Electron Device Lett. 2015, 36, 256–258. [Google Scholar] [CrossRef]
- Jung, D.; Choi, W.; Park, J.Y.; Kim, K.B.; Lee, N.; Seo, Y.; Kim, H.S.; Kong, N.K. Inorganic Gel and Liquid Crystal Based Smart Window Using Silica Sol-Gel Process. Sol. Energy Mater. Sol. Cells 2017, 159, 488–495. [Google Scholar] [CrossRef]
- Mane, A.T.; Kulkarni, S.B.; Navale, S.T.; Ghanwat, A.A.; Shinde, N.M.; Kim, J.; Patil, V.B. NO2 Sensing Properties of Nanostructured Tungsten Oxide Thin Films. Ceram. Int. 2014, 40, 16495–16502. [Google Scholar] [CrossRef]
- Qu, H.Y.; Rojas-González, E.A.; Granqvist, C.G.; Niklasson, G.A. Potentiostatically Pretreated Electrochromic Tungsten Oxide Films with Enhanced Durability: Electrochemical Processes at Interfaces of Indium–Tin Oxide. Thin Solid Film. 2019, 682, 163–168. [Google Scholar] [CrossRef]
- Dulgerbaki, C.; Komur, A.I.; Nohut Maslakci, N.; Kuralay, F.; Uygun Oksuz, A. Synergistic Tungsten Oxide/Organic Framework Hybrid Nanofibers for Electrochromic Device Application. Opt. Mater. 2017, 70, 171–179. [Google Scholar] [CrossRef]
- Karaca, G.Y.; Eren, E.; Cogal, G.C.; Uygun, E.; Oksuz, L.; Uygun Oksuz, A. Enhanced Electrochromic Characteristics Induced by Au/PEDOT/Pt Microtubes in WO3 Based Electrochromic Devices. Opt. Mater. 2019, 88, 472–478. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, M.; Li, Q.; Pan, D. Research on the Properties of Sol-Gel Deposited WO3-NiO Thin Films. Key Eng. Mater. 2017, 727, 929. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Kaushik, V.; Kaushal, A.; Singh, M.; Mehta, B.R. Structural and Photoluminescence Properties of Tin Oxide and Tin Oxide: C Core-Shell and Alloy Nanoparticles Synthesised Using Gas Phase Technique. AIP Adv. 2016, 6, 095321. [Google Scholar] [CrossRef]
- Wen-Cheun Au, B.; Chan, K.Y.; Knipp, D. Effect of Film Thickness on Electrochromic Performance of Sol-Gel Deposited Tungsten Oxide (WO3). Opt. Mater. 2019, 94, 387–392. [Google Scholar] [CrossRef]
- Khan, A.; Bhosale, N.Y.; Mali, S.S.; Hong, C.K.; Kadam, A. V Reduced Graphene Oxide Layered WO3 Thin Film with Enhanced Electrochromic Properties. J. Colloid Interface Sci. 2020, 571, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Dulgerbaki, C.; Oksuz, A.U. Fabricating Polypyrrole/Tungsten Oxide Hybrid Based Electrochromic Devices Using Different Ionic Liquids. Polym. Adv. Technol. 2016, 27, 73–81. [Google Scholar] [CrossRef]
- Song, S.; Xu, G.; Wang, B.; Gu, J.; Wei, H.; Ren, Z.; Zhang, L.; Zhao, J.; Li, Y. Highly-Flexible Monolithic Integrated Infrared Electrochromic Device Based on Polyaniline Conducting Polymer. Synth. Met. 2021, 278, 116822. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pathak, D.K.; Mishra, S.; Yogi, P.; Sagdeo, P.R.; Kumar, R. Polythiophene -Viologen Bilayer for Electro-Trichromic Device. Sol. Energy Mater. Sol. Cells 2018, 188, 249–254. [Google Scholar] [CrossRef]
- Sorar, I.; Bayrak Pehlivan, İ.; Bohlin, J.; Granqvist, C.G.; Niklasson, G.A. Potentiostatic Rejuvenation of Electrochromic WO3 Thin Films: Exploring the Effect of Polyethylene Oxide in LiClO4-Propylene Carbonate Electrolytes. Sol. Energy Mater. Sol. Cells 2020, 218, 110767. [Google Scholar] [CrossRef]
- Hou, X.F.; Zhang, S.; Chen, X.; Bisoyi, H.K.; Xu, T.; Liu, J.; Chen, D.; Chen, X.M.; Li, Q. Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems. ACS Appl. Mater. Interfaces. 2022, 14, 22443. [Google Scholar] [CrossRef]
- Kalagi, S.S.; Mali, S.S.; Dalavi, D.S.; Inamdar, A.I.; Im, H.; Patil, P.S. Transmission Attenuation and Chromic Contrast Characterization of R.F. Sputtered WO3 Thin Films for Electrochromic Device Applications. Electrochim. Acta 2012, 85, 501–508. [Google Scholar] [CrossRef]
- Chananonnawathorn, C.; Pudwat, S.; Horprathum, M.; Eiamchai, P.; Limnontakul, P.; Salawan, C.; Aiempanakit, K. Electrochromic Property Dependent on Oxygen Gas Flow Rate and Films Thickness of Sputtered WO3 Films. Procedia Eng. 2012, 32, 752–758. [Google Scholar] [CrossRef]
- Cossari, P.; Cannavale, A.; Gambino, S.; Gigli, G. Room Temperature Processing for Solid-State Electrochromic Devices on Single Substrate: From Glass to Flexible Plastic. Sol. Energy Mater. Sol. Cells 2016, 155, 411–420. [Google Scholar] [CrossRef]
- Lethy, K.J.; Beena, D.; Vinod Kumar, R.; Mahadevan Pillai, V.P.; Ganesan, V.; Sathe, V.; Phase, D.M. Nanostructured Tungsten Oxide Thin Films by the Reactive Pulsed Laser Deposition Technique. Appl. Phys. A 2008, 91, 637–649. [Google Scholar] [CrossRef]
- Wen-Cheun Au, B.; Tamang, A.; Knipp, D.; Chan, K.Y. Post-Annealing Effect on the Electrochromic Properties of WO3 Films. Opt. Mater. (Amst). 2020, 108, 110426. [Google Scholar] [CrossRef]
- Cheng, W.; Moreno-Gonzalez, M.; Hu, K.; Krzyszkowski, C.; Dvorak, D.J.; Weekes, D.M.; Tam, B.; Berlinguette, C.P. Solution-Deposited Solid-State Electrochromic Windows. iScience 2018, 10, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Caglar, Y.; Caglar, M.; Ilican, S.; Aksoy, S.; Yakuphanoglu, F. Effect of Channel Thickness on the Field Effect Mobility of ZnO-TFT Fabricated by Sol Gel Process. J. Alloys Compd. 2015, 621, 189–193. [Google Scholar] [CrossRef]
- Che, X.; Wu, Z.; Dong, G.; Diao, X.; Zhou, Y.; Guo, J.; Dong, D.; Wang, M. Properties of All-Thin-Film Glass/ITO/WO3:H/Ta2O5/NiOx/ITO Electrochromic Devices Prepared by Magnetron Sputtering. Thin Solid Film. 2018, 662, 6–12. [Google Scholar] [CrossRef]
- Wang, B.; Man, W.; Yu, H.; Li, Y.; Zheng, F. Fabrication of Mo-Doped WO3 Nanorod Arrays on FTO Substrate with Enhanced Electrochromic Properties. Materials 2018, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Kadhim, R.O.; Tarrad, S.N. Structural and Optical Properties of Tin Oxide and Indium Doped SnO2 Thin Films Deposited by Thermal Evaporation Technique. J. Adv. Phys. 2016, 12, 4394–4399. [Google Scholar] [CrossRef]
- Au, B.W.C.; Chan, K.Y. Sodium and Potassium Doped P-Type ZnO Films by Sol-Gel Spin-Coating Technique. Appl. Phys. A Mater. Sci. Process. 2017, 123, 1–9. [Google Scholar] [CrossRef]
- Terohid, S.A.A.; Heidari, S.; Jafari, A.; Asgary, S. Effect of Growth Time on Structural, Morphological and Electrical Properties of Tungsten Oxide Nanowire. Appl. Phys. A 2018, 124, 567. [Google Scholar] [CrossRef]
- Graßmann, C.; Mann, M.; Van Langenhove, L.; Schwarz-Pfeiffer, A. Textile Based Electrochromic Cells Prepared with Pedot: Pss and Gelled Electrolyte. Sensors 2020, 20, 5691. [Google Scholar] [CrossRef]
- Parida, B.; Gil, Y.; Kim, H. Highly Transparent Conducting Indium Tin Oxide Thin Films Prepared by Radio Frequency Magnetron Sputtering and Thermal Annealing. J. Nanosci. Nanotechnol. 2018, 19, 1455–1462. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Yang, M.; Xu, X.; Li, Q. Comparative Study of AZO and ITO Thin Film Sputtered at Different Temperatures and Their Application in Cu2ZnSnS4 Solar Cells. J. Mater. Sci. Mater. Electron. 2018, 29, 17525–17532. [Google Scholar] [CrossRef]
- Cho, J.M.; Kim, J.; Kim, H.; Kim, M.; Moon, S.J.; Jo, J.; Shin, W.S. ITO/AZO Double-Layered Transparent Conducting Oxide Films for Organic Photovoltaic Cells. Mol. Cryst. Liq. Cryst. 2014, 597, 1–7. [Google Scholar] [CrossRef]
- Kim, K.H.; Koo, B.R.; Ahn, H.J. Sheet Resistance Dependence of Fluorine-Doped Tin Oxide Films for High-Performance Electrochromic Devices. Ceram. Int. 2018, 44, 9408–9413. [Google Scholar] [CrossRef]
- Ching-Prado, E.; Watson, A.; Miranda, H. Optical and Electrical Properties of Fluorine Doped Tin Oxide Thin Film. J. Mater. Sci. Mater. Electron. 2018, 29, 15299–15306. [Google Scholar] [CrossRef]
- Mardare, C.C.; Hassel, A.W. Review on the Versatility of Tungsten Oxide Coatings. Phys. Status Solidi 2019, 216, 1900047. [Google Scholar] [CrossRef]
ECD | Anodic Peak Current, mA | Cathodic Peak Current, mA | Anodic Diffusion Coefficient, cm2/s−1 | Cathodic Diffusion Coefficient, cm2/s−1 |
---|---|---|---|---|
ECD(I:A) | 0.164 | −0.662 | 2.59 × 10−13 | 4.21 × 10−12 |
ECD(I:I) | 0.443 | −1.142 | 1.89 × 10−12 | 1.25 × 10−11 |
ECD(F:A) | 0.834 | −1.705 | 6.69 × 10−12 | 2.79 × 10−11 |
ECD(F:I) | 0.706 | −1.665 | 4.79 × 10−12 | 2.66 × 10−11 |
ECD | Coloration Efficiency (cm2/C) | Coloration Charge (mC/cm2) |
---|---|---|
ECD(I:A) | 71.5 | 3.39 |
ECD(I:I) | 42.5 | 5.33 |
ECD(F:A) | 62.5 | 6.29 |
ECD(F:I) | 72.8 | 8.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Au, B.W.-C.; Chan, K.-Y.; Thien, G.S.H.; Yeoh, M.-E.; Sahdan, M.Z.; Murthy, H.C.A. The Effect of Transparent Conducting Oxide Films on WO3-Based Electrochromic Devices with Conducting Polymer Electrolytes. Polymers 2023, 15, 238. https://doi.org/10.3390/polym15010238
Au BW-C, Chan K-Y, Thien GSH, Yeoh M-E, Sahdan MZ, Murthy HCA. The Effect of Transparent Conducting Oxide Films on WO3-Based Electrochromic Devices with Conducting Polymer Electrolytes. Polymers. 2023; 15(1):238. https://doi.org/10.3390/polym15010238
Chicago/Turabian StyleAu, Benedict Wen-Cheun, Kah-Yoong Chan, Gregory Soon How Thien, Mian-En Yeoh, Mohd Zainizan Sahdan, and Hanabe Chowdappa Ananda Murthy. 2023. "The Effect of Transparent Conducting Oxide Films on WO3-Based Electrochromic Devices with Conducting Polymer Electrolytes" Polymers 15, no. 1: 238. https://doi.org/10.3390/polym15010238
APA StyleAu, B. W.-C., Chan, K.-Y., Thien, G. S. H., Yeoh, M.-E., Sahdan, M. Z., & Murthy, H. C. A. (2023). The Effect of Transparent Conducting Oxide Films on WO3-Based Electrochromic Devices with Conducting Polymer Electrolytes. Polymers, 15(1), 238. https://doi.org/10.3390/polym15010238