A Novel Starch from Talisia floresii Standl Seeds: Characterization of Its Physicochemical, Structural and Thermal Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Native Starch (NS) Extraction
2.3. Chemical Proximate Analysis
2.4. Color Determination
2.5. Apparent Amylose Content
2.6. Total Starch
2.7. Differential Scanning Calorimetry (DSC)
2.8. Thermogravimetry Analysis (TGA)
2.9. Fourier Transform Infrared (FTIR) Analysis
2.10. X-ray Diffraction (XRD)
2.11. Scanning Electron Microscopy (SEM) and Particle Size
2.12. Swelling Power and Solubility
2.13. Water Absorption (WAI)
2.14. Statistical Analysis
3. Results and Discussion
3.1. Chemical Proximate Analysis
3.2. Morphology of Starch Granule
3.3. Physicochemical Characteristics
3.4. Swelling Power (SP) and Solubility (IS)
3.5. Water Absorption
3.6. Diferential Scanning Calorimetry Analysis (DSC)
3.7. Fourier Transform Infrared (FTIR) Analysis
3.8. X-ray Diffraction
3.9. Thermogravimetric Analysis (TGA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertoft, E. Understanding starch structure: Recent progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Londoño-Restrepo, S.M.; Rincón-Londoño, N.; Contreras-Padilla, M.; Acosta-Osorio, A.A.; Bello-Pérez, L.A.; Lucas-Aguirre, J.C.; Quintero, V.D.; Pineda-Gómez, P.; del Real-López, A.; Rodríguez-García, M.E. Physicochemical, morphological, and rheological characterization of Xanthosoma robustum Lego-like starch. Int. J. Biol. Macromol. 2014, 65, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pacheco, E.; Moo-Huchin, V.; Estrada-León, R.; Ortiz-Fernández, A.; May-Hernández, L.; Ríos-Soberanis, C.; Betancur-Ancona, D. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydr. Polym. 2014, 101, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Viana, E.B.M.; Oliveira, N.L.; Ribeiro, J.S.; Almeida, M.F.; Souza, C.C.E.; Resende, J.V.; Santos, L.S.; Veloso, C.M. Development of starch-based bioplastics of green plantain banana (Musa paradisiaca L.) modified with heat-moisture treatment (HMT). Food Packag. Shelf Life 2022, 31, 100776. [Google Scholar] [CrossRef]
- Tarahi, M.; Shahidi, F.; Hedayati, S. A Novel starch from bitter vetch (Vicia ervilia) seeds: A comparison of its physicochemical, structural, thermal, rheological and pasting properties with conventional starches. Int. J. Food Sci. Technol. 2022, 57, 6833–6842. [Google Scholar] [CrossRef]
- Punia, S. Barley starch: Structure, properties and in vitro digestibility—A review. Int. J. Biol. Macromol. 2020, 155, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dhital, S.; Gilbert, R.G.; Gidley, M.J. High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydr. Polym. 2020, 245, 116557. [Google Scholar] [CrossRef]
- Nordin, N.; Othman, S.H.; Rashid, S.A.; Basha, R.K. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll. 2020, 106, 105884. [Google Scholar] [CrossRef]
- Zhan, Q.; Ye, X.; Zhang, Y.; Kong, X.; Bao, J.; Corke, H.; Sui, Z. Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocoll. 2020, 101, 105504. [Google Scholar] [CrossRef]
- Dzul, F.J.T. La Estacionalidad de la Selva Baja Inundable: Su Análisis Mediante Percepción Remota. Ph.D. Thesis, El Colegio de la Frontera Sur, Lerma, Mexico, 2007. [Google Scholar]
- Poot-Pool, W.; Cetzal-Ix, W.; Basu, S.; Noguera-Savelli, E.; Noh-Contreras, D. Urban home gardens: A sustainable conservation model for local plants. In Urban Horticulture: Sustainability for the Future; Springer: Cham, Switzerland, 2018; Volume 18, p. 73. [Google Scholar]
- De Villacorzo, P.S.C.M. Documento Técnico Unificado de Aprovechamiento Forestal. Available online: http://sinat.semarnat.gob.mx/dgiraDocs/documentos/CUSF/07L702050214.pdf (accessed on 21 July 2021).
- Estrada-León, R.J.; Moo-Huchin, V.M.; Ríos-Soberanis, C.R.; Betancur-Ancona, D.; May-Hernández, L.H.; Carrillo-Sánchez, F.A.; Cervantes-Uc, J.M.; Pérez-Pacheco, E. The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocoll. 2016, 57, 1–9. [Google Scholar] [CrossRef]
- Betancur, D.A.; Ancona, L.A.C.; Guerrero, R.I.; Camelo Matos, G.; Ortiz, D. Physicochemical and Functional Characterization of Baby Lima Bean (Phaseolus lunatus) Starch. Starch-Stärke 2001, 53, 219–226. [Google Scholar] [CrossRef]
- Okekunle, M.O.; Adebowale, K.O.; Olu-Owolabi, B.I.; Lamprecht, A. Physicochemical, morphological and thermal properties of oxidized starches from Lima bean (Phaseolus lunatus). Sci. Afr. 2020, 8, e00432. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; The Association of Official Analytical Chemists: Rockville, MD, USA, 1925; Volume 2. [Google Scholar]
- Martins da Costa, J.C.; Lima Miki, K.S.; da Silva Ramos, A.; Teixeira-Costa, B.E. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [Google Scholar] [CrossRef] [PubMed]
- Can-Cauich, C.; Sauri-Duch, E.; Cuevas-Glory, L.; Betancur-Ancona, D.; Ortiz-Vázquez, E.; Ríos-Soberanis, C.; Chel-Guerrero, L.; González-Aguilar, G.; Moo-Huchin, V. Physicochemical properties and stability of pumpkin seed oil as affected by different extraction methods and species. Int. Food Res. J. 2021, 28, 148–160. [Google Scholar] [CrossRef]
- Tejeda, L. The thermal descomposition of carbohydrates. II. The descomposition of fiber. Chem. Biochem. 1992, 47, 279–393. [Google Scholar]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Hoover, R.; Warkentin, T. Pea Starch: Composition, Structure and Properties—A Review. Starch-Stärke 2002, 54, 217–234. [Google Scholar] [CrossRef]
- Morrison, W.R.; Laignelet, B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1983, 1, 9–20. [Google Scholar] [CrossRef]
- Zhao, X.; Jayarathna, S.; Turesson, H.; Fält, A.-S.; Nestor, G.; González, M.N.; Olsson, N.; Beganovic, M.; Hofvander, P.; Andersson, R.; et al. Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Sci. Rep. 2021, 11, 4311. [Google Scholar] [CrossRef]
- Moo-Huchin, V.M.; Ac-Chim, D.M.; Chim-Chi, Y.A.; Ríos-Soberanis, C.R.; Ramos, G.; Yee-Madeira, H.T.; Ortiz-Fernández, A.; Estrada-León, R.J.; Pérez-Pacheco, E. Huaya (Melicoccus bijugatus) seed flour as a new source of starch: Physicochemical, morphological, thermal and functional characterization. J. Food Meas. Charact. 2020, 14, 3299–3309. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Zahib, I.R.; Md Tahir, P.; Talib, M.; Mohamad, R.; Alias, A.H.; Lee, S.H. Effects of degree of substitution and irradiation doses on the properties of hydrogel prepared from carboxymethyl-sago starch and polyethylene glycol. Carbohydr. Polym. 2021, 252, 117224. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, N.; Mohammadi Nafchi, A.; Hashemi-Moghaddam, H.; Baghaie, H. The effects of nano-zinc oxide morphology on functional and antibacterial properties of tapioca starch bionanocomposite. Food Sci. Nutr. 2021, 9, 4497–4508. [Google Scholar] [CrossRef]
- Monroy, Y.; Rivero, S.; García, M.A. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochem. 2018, 42, 795–804. [Google Scholar] [CrossRef]
- Rafiq, S.I.; Jan, K.; Singh, S.; Saxena, D.C. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. J. Food Sci. Technol. 2015, 52, 5651–5660. [Google Scholar] [CrossRef] [Green Version]
- Delatte, S.; Doran, L.; Blecker, C.; De Mol, G.; Roiseux, O.; Gofflot, S.; Malumba, P. Effect of pilot-scale steam treatment and endogenous alpha-amylase activity on wheat flour functional properties. J. Cereal Sci. 2019, 88, 38–46. [Google Scholar] [CrossRef]
- Torbica, A.; Belović, M.; Tomić, J. Novel breads of non-wheat flours. Food Chem. 2019, 282, 134–140. [Google Scholar] [CrossRef]
- Da Silva Timm, N.; Ramos, A.H.; Ferreira, C.D.; Biduski, B.; Eicholz, E.D.; de Oliveira, M. Effects of drying temperature and genotype on morphology and technological, thermal, and pasting properties of corn starch. Int. J. Biol. Macromol. 2020, 165, 354–364. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Jawaid, M.; Asim, M. Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Lazzarotto, S.R.d.S.; Lazzarotto, M.; Silveira, A.C.d.; Wendling, I.; Schnitzler, E. Corn starch incorporated with freeze-concentrated Ilex paraguariensis extracts: A potential nutraceutical product. J. Therm. Anal. Calorim. 2021, 146, 171–176. [Google Scholar] [CrossRef]
- Saman, W.R.; Yuliasih, I.; Sugiarto, M. Physicochemical characteristics and functional properties of white sweet potato starch. Int. J. Eng. Manag. Res. 2019, 9, 53–57. [Google Scholar] [CrossRef]
- Qian, J.; Kuhn, M. Characterization of Amaranthus cruentus and Chenopodium quinoa Starch. Starch-Stärke 1999, 51, 116–120. [Google Scholar] [CrossRef]
- Lindeboom, N.; Chang, P.R.; Tyler, R.T. Analytical, Biochemical and Physicochemical Aspects of Starch Granule Size, with Emphasis on Small Granule Starches: A Review. Starch-Stärke 2004, 56, 89–99. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, X.; Singh, R.; de Campo, L.; Gilbert, E.P.; Wu, Z.; Hemar, Y. Effect of amyloglucosidase hydrolysis on the multi-scale supramolecular structure of corn starch. Carbohydr. Polym. 2019, 212, 40–50. [Google Scholar] [CrossRef]
- Jiménez-Hernández, J.; Meneses-Esparza, F.; Rosendo-Escobar, J.; Vivar-Vera, M.A.; Bello-Pérez, L.A.; García-Suárez, F.J. Extracción y caracterización del almidón de las semillas de Enterolobium cyclocarpum Extraction and characterization of starch from Enterolobium cyclocarpum seeds. CyTA J. Food 2011, 9, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Mclellan, M.R.; Lind, L.R.; Kime, R.W. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L, A, B Data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Biduski, B.; da Silva, W.M.F.; Colussi, R.; Halal, S.L.d.M.E.; Lim, L.-T.; Dias, Á.R.G.; Zavareze, E.d.R. Starch hydrogels: The influence of the amylose content and gelatinization method. Int. J. Biol. Macromol. 2018, 113, 443–449. [Google Scholar] [CrossRef]
- Yu, M.; Liu, B.; Zhong, F.; Wan, Q.; Zhu, S.; Huang, D.; Li, Y. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion. Food Hydrocoll. 2021, 114, 106544. [Google Scholar] [CrossRef]
- Iqbal, S.; Wu, P.; Kirk, T.V.; Chen, X.D. Amylose content modulates maize starch hydrolysis, rheology, and microstructure during simulated gastrointestinal digestion. Food Hydrocoll. 2021, 110, 106171. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Q.; Wu, H.; Su, C.; Ge, X.; Shen, H.; Han, L.; Yu, X.; Li, W. The influence of repeated versus continuous dry-heating on the performance of wheat starch with different amylose content. LWT 2021, 136, 110380. [Google Scholar] [CrossRef]
- Kusumayanti, H.; Handayani, N.A.; Santosa, H. Swelling Power and Water Solubility of Cassava and Sweet Potatoes Flour. Procedia Environ. Sci. 2015, 23, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Ulfa, G.M.; Putri, W.D.R.; Widjanarko, S.B. The influence of sodium acetate anhydrous in swelling power, solubility, and water binding capacity of acetylated sweet potato starch. AIP Conf. Proc. 2019, 2120, 050021. [Google Scholar] [CrossRef]
- Mbougueng, P.D.; Tenin, D.; Scher, J.; Tchiégang, C. Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J. Food Eng. 2012, 108, 320–326. [Google Scholar] [CrossRef]
- Betancur, A.D.; Chel, G.L. Acid Hydrolysis and Characterization of Canavalia ensiformis Starch. J. Agric. Food Chem. 1997, 45, 4237–4241. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, N.; Ezekiel, R.; Guraya, H.S. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem. 2007, 101, 643–651. [Google Scholar] [CrossRef]
- Lin, J.-H.; Kao, W.-T.; Tsai, Y.-C.; Chang, Y.-H. Effect of granular characteristics on pasting properties of starch blends. Carbohydr. Polym. 2013, 98, 1553–1560. [Google Scholar] [CrossRef]
- Pérez-Pacheco, E.; Canto-Pinto, J.C.; Moo-Huchin, V.M.; Estrada-Mota, I.A.; Estrada-León, R.J.; Chel-Guerrero, L. Thermoplastic starch (TPS)-cellulosic fibers composites: Mechanical properties and water vapor barrier: A review. In Composites from Renewable and Sustainable Materials; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Li, C.; Gong, B. Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. Int. J. Biol. Macromol. 2020, 155, 721–729. [Google Scholar] [CrossRef]
- Sudheesh, C.; Sunooj, K.V.; George, J.; Kumar, S.; Sajeevkumar, V.A. Physico-chemical, morphological, pasting and thermal properties of stem flour and starch isolated from kithul palm (Caryota urens) grown in valley of Western Ghats of India. J. Food Meas. Charact. 2019, 13, 1020–1030. [Google Scholar] [CrossRef]
- Uzizerimana, F.; Dang, K.; Yang, Q.; Hossain, M.S.; Gao, S.; Bahati, P.; Mugiraneza, N.G.; Yang, P.; Feng, B. Physicochemical properties and in vitro digestibility of tartary buckwheat starch modified by heat moisture treatment: A comparative study. NFS J. 2021, 25, 12–20. [Google Scholar] [CrossRef]
- Shivaraju, V.K.; Vallayil Appukuttan, S.; Kumar, S. The Influence of Bound Water on the FTIR Characteristics of Starch and Starch Nanocrystals Obtained from Selected Natural Sources. Starch-Stärke 2019, 71, 1700026. [Google Scholar] [CrossRef]
- Engel, J.B.; Ambrosi, A.; Tessaro, I.C. Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr. Polym. 2019, 225, 115234. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Soberanis, C.R.; Collí-Pacheco, J.P.; Estrada-León, R.J.; Moo-Huchin, V.M.; Yee-Madeira, H.T.; Pérez-Pacheco, E. Biocomposites based on plasticized starch: Thermal, mechanical and morphological characterization. Polym. Bull. 2021, 78, 3687–3704. [Google Scholar] [CrossRef]
- Pech-Cohuo, S.C.; Hernandez-Colula, J.; Gonzalez-Canche, N.G.; Salgado-Transito, I.; Uribe-Calderon, J.; Cervantes-Uc, J.M.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T.; Pacheco, N. Starch from Ramon seed (Brosimum alicastrum) obtained by two extraction methods. MRS Adv. 2021, 6, 875–880. [Google Scholar] [CrossRef]
- Hao, H.; Li, Q.; Bao, W.; Wu, Y.; Ouyang, J. Relationship between physicochemical characteristics and in vitro digestibility of chestnut (Castanea mollissima) starch. Food Hydrocoll. 2018, 84, 193–199. [Google Scholar] [CrossRef]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 2018, 25, 266. [Google Scholar] [CrossRef]
- Rolando Ríos-Soberanis, C.; Javier Estrada-León, R.; Manuel Moo-Huchin, V.; José Cabrera-Sierra, M.; Manuel Cervantes-Uc, J.; Arturo Bello-Pérez, L.; Pérez-Pacheco, E. Utilization of ramon seeds (Brosimum alicastrum swarts) as a new source material for thermoplastic starch production. J. Appl. Polym. Sci. 2016, 133, 44235. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Li, W.; Wang, X.; Lv, M.; Peng, Q.; Wang, M. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydr. Polym. 2015, 132, 237–244. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Xu, X.; Jin, Z. Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydr. Polym. 2011, 84, 1165–1168. [Google Scholar] [CrossRef]
- Aldas, M.; Pavon, C.; López-Martínez, J.; Arrieta, M.P. Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Appl. Sci. 2020, 10, 2561. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Qin, W.; Guo, B.; Li, P. Effect of plant tannin and glycerol on thermoplastic starch: Mechanical, structural, antimicrobial and biodegradable properties. Carbohydr. Polym. 2022, 295, 119869. [Google Scholar] [CrossRef] [PubMed]
Sample | Moisture (%) | Ashes (%) | Lipids (%) | Crude Fiber (%) | Proteins (%) | Nitrogen-Free Extract (%) |
---|---|---|---|---|---|---|
Native starch | 9.49 ± 0.52 | 1.17 ± 0.05 | 1.60 ± 1.2 | 3.62 ± 0.41 | ND | 93.59 ± 1.01 |
Parameter | Native Starch |
---|---|
Amylose (%) | 33.6 ± 1.15 |
Amylopectin (%) | 66.4 ± 2.05 |
Amylose/amylopectin ratio | 0.5 ± 0.01 |
Starch yield (% d.b.) | 42.1 ± 1.0 |
Total starch (%) | 96.0 ± 0.1 |
pH | 6.44 ± 0.09 |
Parameter | Native Starch |
---|---|
L* | 50.38 ± 0.3 |
a* | 9.33 ± 0.03 |
b* | 17.16 ± 0.02 |
Hue angle | 61.45 ± 0.19 |
Chromaticity C | 19.5 ± 0.0 |
Starch | To (°C) | Tp (°C) | Tc (°C) | ΔHgel (J/g) | PHI (%) |
---|---|---|---|---|---|
Native starch | 81 ± 0.5 | 85 ± 0.25 | 90 ± 0.2 | 17 ± 0.41 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canto-Pinto, J.C.; Reyes-Pérez, E.; Pérez-Pacheco, E.; Ríos-Soberanis, C.R.; Chim-Chi, Y.A.; Lira-Maas, J.D.; Estrada-León, R.J.; Dzul-Cervantes, M.A.A.; Mina-Hernández, J.H. A Novel Starch from Talisia floresii Standl Seeds: Characterization of Its Physicochemical, Structural and Thermal Properties. Polymers 2023, 15, 130. https://doi.org/10.3390/polym15010130
Canto-Pinto JC, Reyes-Pérez E, Pérez-Pacheco E, Ríos-Soberanis CR, Chim-Chi YA, Lira-Maas JD, Estrada-León RJ, Dzul-Cervantes MAA, Mina-Hernández JH. A Novel Starch from Talisia floresii Standl Seeds: Characterization of Its Physicochemical, Structural and Thermal Properties. Polymers. 2023; 15(1):130. https://doi.org/10.3390/polym15010130
Chicago/Turabian StyleCanto-Pinto, Jorge C., Eduardo Reyes-Pérez, Emilio Pérez-Pacheco, Carlos R. Ríos-Soberanis, Yasser A. Chim-Chi, José D. Lira-Maas, Raciel J. Estrada-León, Mario A. A. Dzul-Cervantes, and José H. Mina-Hernández. 2023. "A Novel Starch from Talisia floresii Standl Seeds: Characterization of Its Physicochemical, Structural and Thermal Properties" Polymers 15, no. 1: 130. https://doi.org/10.3390/polym15010130
APA StyleCanto-Pinto, J. C., Reyes-Pérez, E., Pérez-Pacheco, E., Ríos-Soberanis, C. R., Chim-Chi, Y. A., Lira-Maas, J. D., Estrada-León, R. J., Dzul-Cervantes, M. A. A., & Mina-Hernández, J. H. (2023). A Novel Starch from Talisia floresii Standl Seeds: Characterization of Its Physicochemical, Structural and Thermal Properties. Polymers, 15(1), 130. https://doi.org/10.3390/polym15010130