Characterization of Viscoelastic Poisson’s Ratio of Engineering Elastomers via DIC-Based Creep Testing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ernst, L.J.; Zhang, G.Q.; Jansen, K.M.B.; Bressers, H.J.L. Time- and Temperature-Dependent Thermo-Mechanical Modeling of a Packaging Molding Compound and its Effect on Packaging Process Stresses. J. Electron. Packag. 2003, 125, 539–548. [Google Scholar] [CrossRef]
- Świeszkowski, W.; Ku, D.N.; Bersee, H.E.; Kurzydlowski, K.J. An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials 2006, 27, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Al-Hiddabi, S.A.; Pervez, T.; Qamar, S.; Al-Jahwari, F.; Marketz, F.; Al-Houqani, S.; van de Velden, M. Analytical model of elastomer seal performance in oil wells. Appl. Math. Model. 2015, 39, 2836–2848. [Google Scholar] [CrossRef]
- Kugler, H.P.; Stacer, R.G.; Steimle, C. Direct Measurement of Poisson’s Ratio in Elastomers. Rubber Chem. Technol. 1990, 63, 473–487. [Google Scholar] [CrossRef]
- Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100. [Google Scholar] [CrossRef]
- Pandini, S.; Pegoretti, A. Time, temperature, and strain effects on viscoelastic Poisson’s ratio of epoxy resins. Polym. Eng. Sci. 2008, 48, 1434–1441. [Google Scholar] [CrossRef]
- Cui, H.; Ma, W.; Lv, X.; Li, C.; Ding, Y. Investigation on Viscoelastic Poisson’s Ratio of Composite Materials considering the Effects of Dewetting. Int. J. Aerosp. Eng. 2022, 2022, 3696330. [Google Scholar] [CrossRef]
- Cui, H.-R.; Shen, Z.-B. An investigation on a new creep constitutive model and its implementation with the effects of time- and temperature-dependent Poisson’s ratio. Acta Mech. 2018, 229, 4605–4621. [Google Scholar] [CrossRef]
- Tschoegl, N.W.; Knauss, W.G.; Emri, I. Poisson’s Ratio in Linear Viscoelasticity—A Critical Review. Mech. Time-Depend. Mater. 2002, 6, 3–51. [Google Scholar] [CrossRef]
- Van Der Varst, P.G.T.; Kortsmit, W.W. Notes on the lateral contraction of linear isotropic visco-elastic materials. Arch. Appl. Mech. 1992, 62, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Ashrafi, H.; Shariyat, M. A mathematical approach for describing the time-dependent Poisson’s ratio of viscoelastic ligaments mechanical characteristics of biological tissues. In Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, 3–4 November 2010. [Google Scholar] [CrossRef]
- O’Brien, D.J.; Sottos, N.R.; White, S.R. Cure-dependent Viscoelastic Poisson’s Ratio of Epoxy. Exp. Mech. 2007, 47, 237–249. [Google Scholar] [CrossRef]
- Farfan-Cabrera, L.I.; Pascual-Francisco, J.B. An Experimental Methodological Approach for Obtaining Viscoelastic Poisson’s Ratio of Elastomers from Creep Strain DIC-Based Measurements. Exp. Mech. 2022, 62, 287–297. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- Pascual-Francisco, J.B.; Barragán-Pérez, O.; Susarrey-Huerta, O.; Michtchenko, A.; Martínez-García, A.; Farfán-Cabrera, L.I. The effectiveness of shearography and digital image correlation for the study of creep in elastomers. Mater. Res. Express 2017, 4, 115301. [Google Scholar] [CrossRef]
- Sahu, R.; Patra, K.; Szpunar, J. Experimental Study and Numerical Modelling of Creep and Stress Relaxation of Dielectric Elastomers. Strain 2014, 51, 43–54. [Google Scholar] [CrossRef]
- Degrange, J.-M.; Thomine, M.; Kapsa, P.; Pelletier, J.M.; Chazeau, L.; Vigier, G.; Dudragne, G.; Guerbé, L. Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber (NBR) for lip seal application. Wear 2005, 259, 684–692. [Google Scholar] [CrossRef]
- Herbert, E.G.; Phani, P.S.; Johanns, K.E. Nanoindentation of viscoelastic solids: A critical assessment of experimental methods. Curr. Opin. Solid State Mater. Sci. 2015, 19, 334–339. [Google Scholar] [CrossRef]
- Tweedie, C.A.; Van Vliet, K.J. Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 2006, 21, 1576–1589. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, S.; Takashi, M.; Gotoh, J. Photoviscoelastic Stress Analysis near Contact Regions under Complex Loads. Mech. Time-Depend. Mater. 1997, 1, 51–65. [Google Scholar] [CrossRef]
- Darlix, B.; Montmitonnet, P.; Monasse, B. Creep of polymers under ball indentation: A theoretical and experimental study. Polym. Test. 1986, 6, 189–203. [Google Scholar] [CrossRef]
- Oyen, M.L. Spherical Indentation Creep Following Ramp Loading. J. Mater. Res. 2005, 20, 2094–2100. [Google Scholar] [CrossRef]
- Rubin, A.; Favier, D.; Danieau, P.; Giraudel, M.; Chambard, J.-P.; Gauthier, C. Direct observation of contact on non transparent viscoelastic polymers surfaces: A new way to study creep and recovery. Prog. Org. Coat. 2016, 99, 134–139. [Google Scholar] [CrossRef]
- Pascual-Francisco, J.B.; Farfan-Cabrera, L.I.; Susarrey-Huerta, O. Characterization of tension set behavior of a silicone rubber at different loads and temperatures via digital image correlation. Polym. Test. 2020, 81, 106226. [Google Scholar] [CrossRef]
- Stoček, R.; Stěnička, M.; Maloch, J. Determining Parametrical Functions Defining the Deformations of a Plane Strain Tensile Rubber Sample. In Fatigue Crack Growth in Rubber Materials. Advances in Polymer Science; Heinrich, G., Kipscholl, R., Stoček, R., Eds.; Springer: Cham, Germany, 2020; Volume 286, pp. 19–38. [Google Scholar] [CrossRef]
- Stoček, R.; Heinrich, G.; Gehde, M.; Kipscholl, R. A new testing concept for determination of dynamic crack propagation in rubber materials. KGK Rubberpoint 2012, 65, 49–53. [Google Scholar]
- Stoček, R.; Heinrich, G.; Gehde, M.; Kipscholl, R. Analysis of dynamic crack propagation in elastomers by simultaneous tensile- and pure-shear-mode testing. In Fracture Mechanics and Statistical Mechanics of Reinforced Elastomeric Blends (Lecture Notes in Applied and Computational Mechanics); Grellmann, W., Heinrich, G., Kaliske, M., Klüppel, M., Schneider, K., Vilgis, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 70, pp. 269–301. [Google Scholar] [CrossRef]
- Robertson, C.G.; Hardman, N.J. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers 2021, 13, 538. [Google Scholar] [CrossRef] [PubMed]
- Findley, W.N.; Lai, J.S.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials; Dover Publications: New York, NY, USA, 1976; pp. 50–70. [Google Scholar]
- Cui, H.R.; Tang, G.J.; Shen, Z.B. Study on the Viscoelastic Poisson’s Ratio of Solid Propellants Using Digital Image Correlation Method. Propellants Explos. Pyrotech. 2016, 41, 835. [Google Scholar] [CrossRef]
- Grassia, L.; D’Amore, A.; Simon, S.L. On the viscoelastic Poisson’s ratio in amorphous polymers. J. Rheol. 2010, 54, 1009–1022. [Google Scholar] [CrossRef]
- Aili, A.; Vandamme, M.; Torrenti, J.-M.; Masson, B. Theoretical and practical differences between creep and relaxation Poisson’s ratios in linear viscoelasticity. Mech. Time-Depend. Mater. 2015, 19, 537–555. [Google Scholar] [CrossRef] [Green Version]
- Charpin, L.; Sanahuja, J. Creep and relaxation Poisson’s ratio: Back to the foundations of linear viscoelasticity. Application to concrete. Int. J. Solids Struct. 2017, 110, 2–14. [Google Scholar] [CrossRef]
Material/Test | Property/Parameter | Value |
---|---|---|
Ethylene-Propylene-Diene Monomer (EPDM) (Manufacturer: Rodillos BMR®, Guadalajara, Jalisco, México) | Hardness, ASTM-D2240 (Shore A) | 68.5 ± 2 |
Tensile breaking strength, ASTM-D412 (MPa) | 14 ± 0.6 | |
Flouroelastomer, Viton® (FKM) (Manufacturer: Rodillos BMR®, Guadalajara, Jalisco, México) | Hardness, ASTM-D2240 (Shore A) | 77.5 ± 2 |
Tensile breaking strength, ASTM-D412 (MPa) | 11 ± 0.7 | |
Nitrile Butadiene Rubber (NBR) (Manufacturer: Rodillos BMR®, Guadalajara, Jalisco, México) | Hardness, ASTM-D2240 (Shore A) | 73 ± 2 |
Tensile breaking strength, ASTM-D412 (MPa) | 6.9 ± 0.5 | |
Silicone rubber/Vinyl-Methyl silicone (VMQ) (Manufacturer: Rodillos BMR®, Guadalajara, Jalisco, México) | Hardness, ASTM-D2240 (Shore A) | 47.5 ± 1.5 |
Tensile breaking strength, ASTM-D412 (MPa) | 5 ± 0.8 | |
Neoprene/Chloroprene Rubber (CR) (Manufacturer: Rodillos BMR®, Guadalajara, Jalisco, México) | Hardness, ASTM-D2240 (Shore A) | 69 ± 2 |
Tensile breaking strength, ASTM-D412 (MPa) | 3.5 ± 0.5 | |
Strain measurement/DIC parameters | Subset (pixels) | 17 |
Step (pixels) | 3 | |
Field of view (mm × mm) | 55 × 36 | |
Measurement points (points) | 425 | |
Temporal resolution (fps) | 1 | |
Camera distance (mm) | 200 | |
Image resolution (pixels × pixels) | 1280 × 800 | |
Spatial resolution (mm) | 0.1 | |
Strain resolution (mm/m) | 0.25 | |
Frame amount | 1800 | |
Measurement time (minutes) | 30 | |
Creep test | Tensile load (N) | 2, 4, 6 |
Stress (kPa) | 200, 400, 600 | |
Temperature (°C) | 25 ± 1, 50 ± 2 and 80 ± 2 | |
Test time (minutes) | 30 |
Material | Stress (kPa) | Temperature (°C) | Error (%) | Error (%) | ||
---|---|---|---|---|---|---|
EPDM | 200 | 25 | 3.7 | 9.5 | ||
50 | 5.5 | 4.4 | ||||
80 | 1.8 | 3.1 | ||||
400 | 25 | 1.6 | 3.5 | |||
50 | 2.0 | 2.7 | ||||
80 | 3.6 | 3.6 | ||||
600 | 25 | 3.0 | 2.0 | |||
50 | 4.0 | 3.3 | ||||
80 | 4.8 | 2.5 | ||||
CR | 200 | 25 | 3.1 | 6.3 | ||
50 | 1.4 | 3.4 | ||||
80 | 2.4 | 4.1 | ||||
400 | 25 | 1.9 | 4.8 | |||
50 | 3.0 | 3.8 | ||||
80 | 2.3 | 3.2 | ||||
600 | 25 | 2.3 | 4.6 | |||
50 | 2.2 | 4.5 | ||||
80 | 3.1 | 4.2 | ||||
NBR | 200 | 25 | 2.0 | 11 | ||
50 | 3.0 | 11 | ||||
80 | 1.6 | 4.6 | ||||
400 | 25 | 1.0 | 3.1 | |||
50 | 3.0 | 5.5 | ||||
80 | 2.3 | 3.6 | ||||
600 | 25 | 2.0 | 2.4 | |||
50 | 2.7 | 2.6 | ||||
80 | 2.0 | 3.9 | ||||
VMQ | 200 | 25 | 3.2 | 4.2 | ||
50 | 1.9 | 3.6 | ||||
80 | 1.3 | 5.5 | ||||
400 | 25 | 2.6 | 3.3 | |||
50 | 1.7 | 2.4 | ||||
80 | 1.5 | 2.0 | ||||
600 | 25 | 2.0 | 3.0 | |||
50 | 1.1 | 2.3 | ||||
80 | 2.2 | 2.2 | ||||
FKM | 200 | 25 | 4.3 | 22 | ||
50 | 2.4 | 5.5 | ||||
80 | 1.4 | 5.6 | ||||
400 | 25 | 2.4 | 3.6 | |||
50 | 3.8 | 3.7 | ||||
80 | 2.3 | 2.8 | ||||
600 | 25 | 3.2 | 3.9 | |||
50 | 2.7 | 2.9 | ||||
80 | 3.3 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotomayor-del-Moral, J.A.; Pascual-Francisco, J.B.; Susarrey-Huerta, O.; Resendiz-Calderon, C.D.; Gallardo-Hernández, E.A.; Farfan-Cabrera, L.I. Characterization of Viscoelastic Poisson’s Ratio of Engineering Elastomers via DIC-Based Creep Testing. Polymers 2022, 14, 1837. https://doi.org/10.3390/polym14091837
Sotomayor-del-Moral JA, Pascual-Francisco JB, Susarrey-Huerta O, Resendiz-Calderon CD, Gallardo-Hernández EA, Farfan-Cabrera LI. Characterization of Viscoelastic Poisson’s Ratio of Engineering Elastomers via DIC-Based Creep Testing. Polymers. 2022; 14(9):1837. https://doi.org/10.3390/polym14091837
Chicago/Turabian StyleSotomayor-del-Moral, Jonathan A., Juan B. Pascual-Francisco, Orlando Susarrey-Huerta, Cesar D. Resendiz-Calderon, Ezequiel A. Gallardo-Hernández, and Leonardo I. Farfan-Cabrera. 2022. "Characterization of Viscoelastic Poisson’s Ratio of Engineering Elastomers via DIC-Based Creep Testing" Polymers 14, no. 9: 1837. https://doi.org/10.3390/polym14091837
APA StyleSotomayor-del-Moral, J. A., Pascual-Francisco, J. B., Susarrey-Huerta, O., Resendiz-Calderon, C. D., Gallardo-Hernández, E. A., & Farfan-Cabrera, L. I. (2022). Characterization of Viscoelastic Poisson’s Ratio of Engineering Elastomers via DIC-Based Creep Testing. Polymers, 14(9), 1837. https://doi.org/10.3390/polym14091837